Home
International Journal of Science and Research Archive
International, Peer reviewed, Open access Journal ISSN Approved Journal No. 2582-8185

Main navigation

  • Home
  • Past Issues

Small language models in big data marketing analytics: Addressing bias, accuracy and ethical challenges

Breadcrumb

  • Home
  • Small language models in big data marketing analytics: Addressing bias, accuracy and ethical challenges

Michael Ehiedu Usiagwu 1, 2, *, Lawal Muez 3 and Johnson Chinonso 4

1 Department of Marketing, Salford University, Manchester, United Kingdom, School of Business. 

2 Department of Accounting, National Open University Nigeria.

3 Department of Urban and Reginal Planning, Ladoke Akintola University of Technology, Nigeria.

4 Department of Accounting. Kwara State Polytechnic. Nigeria.

Research Article

International Journal of Science and Research Archive, 2025, 14(02), 889-902

Article DOI: 10.30574/ijsra.2025.14.2.0445

DOI url: https://doi.org/10.30574/ijsra.2025.14.2.0445

Received on 03 January 2025, revised on 08 February 2025; accepted on 11 February 2025

Small Language Models (SLMs) are gaining prominence in big data marketing analytics due to their efficiency and scalability. This study evaluates the role of SLMs, emphasizing their benefits in tasks such as sentiment analysis and customer segmentation while addressing limitations, including biases, accuracy constraints, and ethical considerations. Using a mixed-methods approach, the research integrates experimental testing, literature reviews, and expert interviews to compare SLMs with larger models, focusing on performance, bias mitigation, and ethical compliance. The findings underscore the need for strategies to reduce biases, improve transparency, and ensure ethical deployment, enabling SLMs to be leveraged effectively in marketing analytics

Small Language Models; Big Data; Marketing Analytics; Bias; Ethics; Accuracy; Natural Language Processing

https://journalijsra.com/sites/default/files/fulltext_pdf/IJSRA-2025-0445.pdf

Preview Article PDF

Michael Ehiedu Usiagwu, Lawal Muez and Johnson Chinonso. Small language models in big data marketing analytics: Addressing bias, accuracy and ethical challenges. International Journal of Science and Research Archive, 2025, 14(02), 889-902. Article DOI: https://doi.org/10.30574/ijsra.2025.14.2.0445.

Copyright © 2025 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution Liscense 4.0

Footer menu

  • Contact

Copyright © 2026 International Journal of Science and Research Archive - All rights reserved

Developed & Designed by VS Infosolution