Home
International Journal of Science and Research Archive
International, Peer reviewed, Open access Journal ISSN Approved Journal No. 2582-8185

Main navigation

  • Home
  • Past Issues

Unlocking COVID-19 patterns: Exploring deep learning models for precise recognition and classification of CT images

Breadcrumb

  • Home
  • Unlocking COVID-19 patterns: Exploring deep learning models for precise recognition and classification of CT images

Monu Kumar 1, *, Suman Saurav 2, Jeswyn Jas 3, Gagan Gaurav 4 and Nagendra Jha 1

1 Department of Information Technology, National Institute of Technology Raipur, Chhattisgarh, India.
2 Department of Biomedical Engineering, National Institute of Technology Raipur, Chhattisgarh, India.
3 Department of Chemical Engineering, National Institute of Technology Raipur, Chhattisgarh, India.
4 Department of Metallurgical and Materials Engineering, National Institute of Technology Raipur, Chhattisgarh, India.

Research Article
 
International Journal of Science and Research Archive, 2023, 09(02), 474–487.
Article DOI: 10.30574/ijsra.2023.9.2.0597
DOI url: https://doi.org/10.30574/ijsra.2023.9.2.0597

Received on 16 June  2023; revised on 25 July 2023; accepted on 28 July 2023

Coronavirus is a pestilence sickness that truly affects old individuals and patients with persistent illnesses and causes life threatening diseases. Preventing the entire world from this epidemic, quick and accurate detection of COVID-19 plays a crucial role. To contain the advancement of Covid, it is important to build up a dependent and fast technique to recognize the individuals who are influenced and segregate them until full recovery is made. In this study, we introduce a groundbreaking deep CNN model, leveraging the latest advancements in the field, to accomplish precise categorization of COVID-19 CT images. We employ the publicly available HUST-19 dataset, encompassing an impressive collection of 13,980 CT scan images. By harnessing the power of this extensive dataset, our model aims to improve the precision and reliability of COVID-19 classification. In our research, we propose three innovative architectures for deep convolutional neural networks (CNNs), known as AlexNet, Inception V3 and VGG19 models, to get the accurate diagnosis of COVID-19 patients based on images obtained from a CT scan.
In order to assess the effectiveness of CNN-based models in a quantitative manner, we employ several key metrics, including Accuracy, Precision, Recall and F-score. The findings of our study indicate that all these three architectures gave remarkable results but InceptionV3 came on the top with testing accuracy of 99.95% with precision, recall and f1-score of 1, 1, and 1 respectively. The results underscore the potential of our suggested method in accurately diagnosing COVID-19 cases utilizing CT scan images.

Coronavirus; Convolutional Neural Network; AlexNet; InceptionV3; VGG19

https://ijsra.co.in/sites/default/files/fulltext_pdf/IJSRA-2023-0597.pdf

Preview Article PDF

Monu Kumar, Suman Saurav, Jeswyn Jas, Gagan Gaurav and Nagendra Jha. Unlocking COVID-19 patterns: Exploring deep learning models for precise recognition and classification of CT images. International Journal of Science and Research Archive, 2023, 09(02), 474–487. Article DOI: https://doi.org/10.30574/ijsra.2023.9.2.0597

Copyright © 2023 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution Liscense 4.0

Footer menu

  • Contact

Copyright © 2026 International Journal of Science and Research Archive - All rights reserved

Developed & Designed by VS Infosolution