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Abstract 

Medical billing fraud imposes significant financial and operational challenges on healthcare systems, highlighting the 
need for robust, privacy-preserving fraud detection solutions. This study presents a secure data pipeline that integrates 
homomorphic encryption (HE) and federated learning (FL) to enable decentralized fraud detection while maintaining 
patient confidentiality. Homomorphic encryption ensures data remains protected throughout the analytical process, 
while federated learning facilitates collaborative model training across healthcare institutions without requiring data 
centralization. Key findings reveal that increasing privacy levels via differential privacy effectively reduces data leakage 
risks, though it introduces minor computational overhead and a slight reduction in model accuracy. Scalability tests 
show that larger datasets considerably increase encryption time and memory usage, underscoring the need for 
optimized encryption algorithms. Additionally, secure communication protocols, while essential for data integrity, 
result in increased latency, which may impact real-time detection capabilities. The proposed pipeline achieves a balance 
between security and fraud detection accuracy, demonstrating its potential for real-world applications. However, 
further optimization of encryption methods and secure communication protocols is essential for broader scalability. 
This work advances privacy-centric approaches in healthcare fraud detection, setting a foundation for developing 
secure, scalable fraud detection systems. 

Keywords: Medical billing fraud; Homomorphic encryption; Federated learning; Differential privacy; Healthcare data 
security 

1. Introduction

Medical billing fraud has emerged as one of the most pervasive and costly issues within healthcare systems worldwide, 
leading to billions in financial losses annually and compromising the allocation of resources intended for patient care. 
In the United States, healthcare fraud is estimated to account for approximately 3-10% of total healthcare expenditures, 
amounting to over $100 billion per year [1]. Medical billing fraud takes various forms, including upcoding, phantom 
billing, and duplicate claims, all of which exploit vulnerabilities in traditional billing systems. As healthcare data become 
increasingly digitized, safeguarding these systems from fraud becomes essential, not only for financial integrity but also 
for maintaining trust in healthcare institutions and preserving patient privacy [2,3]. Traditional fraud detection 
systems, largely reliant on centralized data processing and pattern recognition algorithms, expose patient data to 
potential breaches and unauthorized access, raising concerns about data security and confidentiality [4]. 

To address these limitations, privacy-centric approaches like homomorphic encryption (HE) and federated learning 
(FL) have been explored for secure and efficient data handling in high-risk environments such as medical billing. 
Homomorphic encryption, a cryptographic technique that allows computations on encrypted data without requiring 
decryption, has gained considerable attention for its potential to maintain data privacy while enabling real-time analysis 

Designing secure data pipelines for medical billing fraud detection using homomorphic 
encryption and federated learning
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of sensitive information [5]. Homomorphic encryption operates by transforming data into a cipher form that can 
undergo mathematical operations, yielding results that remain encrypted until decrypted by the original user [6]. 
However, despite its significant promise, the practical application of HE in medical billing fraud detection remains 
constrained by high computational demands, which can slow down processing times and increase system costs, 
especially when handling large, complex datasets [7,8]. To mitigate these constraints, advancements in algorithmic 
efficiency for HE, such as faster arithmetic operations and optimized encryption schemes, are being actively researched 
[9]. 

In parallel, federated learning offers a decentralized framework for collaborative machine learning without data 
centralization, allowing multiple healthcare institutions to participate in model training while keeping sensitive patient 
data local [10]. In the context of fraud detection, FL enables the aggregation of diverse billing patterns from multiple 
institutions, improving model robustness and accuracy without risking patient privacy. By distributing the model 
training process across multiple nodes, FL reduces the risk of data exposure and aligns well with stringent regulatory 
standards, including the Health Insurance Portability and Accountability Act (HIPAA) [11,12]. The combination of HE 
and FL could thus form a powerful architecture for medical billing fraud detection, where HE ensures encrypted data 
computations, and FL provides a privacy-preserving model training mechanism [13]. This dual-layered approach not 
only aligns with data privacy mandates but also allows for scalable, secure data pipelines that enhance fraud detection 
accuracy and speed. 

Despite these advantages, integrating HE with FL presents substantial technical and architectural challenges. For 
instance, homomorphic encryption often requires specialized processing units and optimized data structures to handle 
encrypted data without compromising performance. The complexity of performing arithmetic operations on encrypted 
data raises the computational cost, making it crucial to develop HE algorithms that are both efficient and compatible 
with federated settings [14]. Additionally, implementing federated learning in medical billing fraud detection 
necessitates secure aggregation protocols and communication channels between participating institutions, which must 
be engineered to prevent data leakage or compromise [15,16]. Developing these protocols involves ensuring secure 
model updates, differential privacy, and secure multi-party computation (SMPC), which collectively safeguard patient 
data while allowing high-quality, collaborative fraud detection [17]. Each of these components must be carefully 
designed to ensure that the integrated pipeline maintains a balance between fraud detection efficacy and regulatory 
compliance. 

To tackle these limitations, this research proposes a novel, privacy-centric data pipeline for medical billing fraud 
detection, integrating homomorphic encryption (HE) and federated learning (FL). Homomorphic encryption enables 
secure computations on encrypted data, allowing sensitive billing information to remain confidential throughout 
processing, which is essential for privacy in healthcare data handling [14]. However, while HE provides strong data 
protection, its application in large-scale billing systems is limited by computational demands and processing overhead 
[13]. Federated learning addresses these challenges by facilitating decentralized model training, enabling healthcare 
institutions to collaboratively detect fraud without centralizing patient data, thus reducing data exposure risks and 
enhancing regulatory compliance [15, 20]. 

The integration of HE with FL presents a unique opportunity to balance effective fraud detection with rigorous data 
privacy protections. Despite this potential, several technical challenges remain, including the high computational cost 
of homomorphic operations, the need for efficient inter-institutional communication protocols, and the design of secure 
model aggregation mechanisms that prevent data leakage during model updates [8,9]. Addressing these issues requires 
an optimized, modular architecture that ensures compatibility between HE and FL, alongside adherence to healthcare 
data standards. 

By addressing the technical and ethical challenges associated with secure data handling, this work seeks to advance the 
field of medical billing fraud prevention, offering a model that is both privacy-conscious and capable of adaptive, large-
scale fraud detection. 

Research Aim 

This study aims to develop and evaluate a secure, scalable data pipeline by combining homomorphic encryption with 
federated learning, with a focus on its application to medical billing fraud detection. Through this integration, the 
research seeks to create a data pipeline that maintains patient confidentiality, enhances fraud detection accuracy, and 
provides a compliance-ready framework for real-world healthcare settings. By advancing privacy-preserving 
technologies, this research aims to transform data security standards in the healthcare billing sector, offering a 
sustainable and scalable solution to one of the industry’s most pressing challenges [21]. 
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Objectives 

 To develop an efficient homomorphic encryption framework for processing encrypted medical billing data, 
allowing secure computations on sensitive information without decryption, thereby preserving patient 
confidentiality throughout the data pipeline. 

 To design a federated learning architecture for decentralized model training, enabling multiple healthcare 
institutions to collaborate in fraud detection model development without centralizing patient data, thus 
reducing data exposure risks and aligning with data privacy regulations. 

 To optimize algorithmic compatibility between homomorphic encryption and federated learning, addressing 
computational efficiency and processing speed to ensure that the integrated pipeline can handle large-scale 
billing datasets in real-time. 

 To implement secure communication and aggregation protocols that protect data integrity during model 
updates and prevent data leakage, ensuring robust inter-institutional collaboration in fraud detection. 

 To evaluate the proposed pipeline’s scalability, computational performance, and compliance with healthcare 
data regulations (e.g., HIPAA), validating its applicability within diverse healthcare infrastructures. 

 To assess the pipeline's fraud detection accuracy through real-world billing datasets, analyzing its performance 
in identifying billing anomalies compared to traditional, centralized fraud detection methods. 

2. Methodology 

2.1. Data Collection and Preprocessing 

The research uses simulated medical billing datasets generated from publicly available data sources and anonymized 
samples to ensure compliance with privacy regulations. These datasets simulate typical billing activities and known 
fraudulent cases, including upcoding, phantom billing, and double billing, allowing for a comprehensive training and 
validation dataset [13]. Preprocessing involves data cleaning, normalization, and encryption preparation, converting 
billing entries into formats compatible with HE operations. To preserve data structure in encrypted form, optimized 
encoding techniques, such as binary and modular encoding, are applied to minimize computational overhead [14]. 

 

Figure 1 Secure Data Pipeline Flow for Medical Billing Fraud Detection. This flow chart illustrates the sequential 
stages in a secure data pipeline designed for medical billing fraud detection, integrating homomorphic encryption and 

federated learning 

2.2. Homomorphic Encryption Design 

The homomorphic encryption framework is developed to enable encrypted computations directly on billing data, 
allowing the fraud detection algorithm to operate without decrypting sensitive information (Figure 1). This study 
adopts a leveled homomorphic encryption (LHE) scheme, which supports multiple layers of addition and multiplication, 
operations essential for fraud pattern detection while controlling for computational intensity [15]. Given the 
computational constraints associated with HE, customized libraries such as Microsoft SEAL and PALISADE are utilized 
to facilitate the implementation of optimized encryption algorithms compatible with large datasets [16]. The HE module 
is designed to execute basic arithmetic on encrypted data, with special focus on ensuring compatibility with FL model 
training. 
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2.3. Federated Learning Architecture 

The federated learning architecture is constructed to facilitate collaborative model training across multiple nodes, 
representing distinct healthcare institutions, without requiring data centralization. Each node hosts a local model 
trained on its encrypted billing dataset, and these models are periodically aggregated at a central server using secure 
model aggregation protocols [17]. The federated setup employs differential privacy measures to protect data during 
inter-node communication and mitigate risks of indirect data exposure. Key techniques include the addition of noise to 
model updates and secure multi-party computation (SMPC) for model parameter aggregation, which ensures that 
individual institutions’ datasets remain confidential throughout the training process [18,19]. 

2.4. Model Aggregation and Secure Communication 

For secure model aggregation, the study utilizes a federated averaging algorithm enhanced with SMPC protocols to 
securely aggregate model updates from each participating node. This aggregation allows the central model to 
incorporate insights from diverse billing patterns across institutions, enhancing its fraud detection capabilities without 
exposing patient data [20]. Communication between nodes is encrypted using Transport Layer Security (TLS) protocols, 
with additional end-to-end encryption measures for added security, ensuring that model updates are protected from 
interception during transmission [21]. 

2.5. Computational Performance Optimization 

Given the computationally intensive nature of HE and FL, optimizations are implemented to enhance processing 
efficiency. This includes algorithmic tuning to reduce latency in encrypted computations, batching techniques to 
accelerate HE operations, and asynchronous model updates to decrease federated learning communication overhead 
[22]. Additionally, the pipeline is tested on a distributed computing setup to simulate real-world scalability, assessing 
performance across different levels of computational resources and data volumes. 

2.6. Evaluation Metrics 

The proposed data pipeline is evaluated on three primary criteria: privacy preservation, fraud detection accuracy, and 
computational efficiency. Privacy preservation is assessed by measuring data leakage risk using metrics based on 
differential privacy standards [23]. Fraud detection accuracy is evaluated through traditional performance metrics, 
including precision, recall, and F1 score, measured on both simulated and real-world billing datasets. Computational 
efficiency is assessed by recording processing times and resource usage for both HE and FL operations, benchmarking 
these against centralized, unencrypted systems to quantify performance improvements and trade-offs [24,25]. 

2.7. Compliance Assessment 

To ensure that the framework adheres to relevant healthcare data regulations, the final pipeline is evaluated for 
compliance with HIPAA and the General Data Protection Regulation (GDPR). This involves verifying that encryption, 
data handling protocols, and privacy-preserving techniques align with regulatory standards, demonstrating the 
pipeline’s applicability in regulated healthcare environments [26].  

3. Results  

3.1. Encryption Efficiency under Varying Data Volumes 

In this analysis, encryption efficiency was measured across different data volumes to evaluate the scalability of the 
homomorphic encryption algorithm. Three primary variables were assessed: data volume (measured in megabytes, 
MB), encryption processing time (in seconds), and CPU utilization (in percentage). Observations indicate that as data 
volume increases, processing time and CPU utilization rise non-linearly, suggesting potential computational bottlenecks 
at higher data volumes. 
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Table 1 Impact of Data Volume on Encryption Efficiency 

Data Volume (MB) Encryption Processing Time (s) CPU Utilization (%) 

10 2.3 45 

50 12.8 60 

100 28.5 73 

200 65.1 85 

500 152.7 92 

 

As shown in Table 1, the processing time increased substantially with larger data volumes, highlighting the need for 
further optimization in the encryption module. CPU utilization also neared its peak capacity at higher data volumes, 
indicating the potential for overload in resource-constrained environments. 

3.2. Model Accuracy Across Federated Learning Nodes 

To evaluate model accuracy in detecting fraud, local models were trained at various federated learning nodes. Key 
variables included the number of training iterations, model accuracy (measured as a percentage), and data size per node 
(in MB). Results demonstrated that nodes with larger datasets achieved higher accuracy faster, but required more 
computational resources, impacting scalability. 

Table 2 Model Accuracy and Training Iterations across Federated Learning Nodes 

Node ID Training Iterations Model Accuracy (%) Data Size (MB) 

Node 1 100 87 25 

Node 2 200 89 50 

Node 3 150 85 30 

Node 4 250 90 75 

Node 5 300 92 100 

 
As seen in Table 2, higher data sizes per node generally corresponded with improved model accuracy, though at the 
expense of longer training times. This suggests a trade-off between accuracy and resource requirements, particularly in 
federated learning settings. 

3.3. Computational Resource Utilization during Secure Model Aggregation 

In this phase, resource utilization was assessed during secure model aggregation, focusing on three variables: memory 
usage (in MB), bandwidth consumption (in Mbps), and latency (in ms). Observations indicate that secure aggregation 
demands substantial memory and bandwidth, with latency varying based on the network infrastructure. 

Table 3 Resource Utilization during Secure Model Aggregation 

Aggregation Round Memory Usage (MB) Bandwidth Consumption (Mbps) Latency (ms) 

Round 1 512 150 25 

Round 2 600 170 30 

Round 3 700 200 28 

Round 4 750 210 32 

Round 5 800 220 35 
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As shown in Table 3, memory usage and bandwidth consumption both increased progressively with each aggregation 
round. This emphasizes the need for optimized resource allocation strategies to maintain efficiency, particularly in high-
frequency aggregation scenarios. 

3.4. Impact of Privacy Levels on Data Leakage Risk 

To assess the effectiveness of differential privacy in the pipeline, varying levels of privacy (measured by the epsilon 
parameter) were applied, and the resulting data leakage risk was measured. The variables analyzed were privacy level, 
noise added, and data leakage risk. The findings indicate that higher privacy levels, achieved by increasing the noise 
added to the dataset, correlate with a reduction in data leakage risk. 

 

Figure 2 Privacy Levels and Associated Data Leakage Risks 

Increasing the noise added to the data via differential privacy significantly reduced the data leakage risk (Figure 1b). 
However, higher noise levels may impact model accuracy, necessitating a careful balance between privacy and utility. 

3.5. Fraud Detection Precision across Data Subsets 

To evaluate model precision across different types of medical billing data, subsets of the dataset were analyzed. The 
subsets included data on various billing codes and transaction types. Key metrics assessed were precision, recall, and 
F1 score. The findings suggest that certain data subsets yielded higher precision and recall rates, indicating variability 
in fraud detection performance based on the data characteristics. 

Table 4 Precision, Recall, and F1 Score Across Data Subsets 

Data Subset Precision (%) Recall (%) F1 Score 

Billing Codes 1-100 91 89 90 

Transaction Type A 87 85 86 

Outpatient Claims 84 83 83.5 

Billing Codes 101-200 90 88 89 

High-Value Claims 92 87 89.5 

Inpatient Claims 88 86 87 

 
Table 4 demonstrates that subsets involving high-value claims and specific billing codes achieved better precision, 
suggesting that these categories might be more prone to fraudulent activities, thereby enhancing model performance. 
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3.6. Encryption Efficiency across Different Data Sizes 

This analysis focused on the scalability of the homomorphic encryption system when processing varying data sizes. Key 
variables included data size, encryption time, and memory usage. The results show that encryption time and memory 
usage both increase significantly with larger data sizes, though the rate of increase was not strictly linear. 

 

Figure 3 Encryption Efficiency Based on Data Size 

Figure 3 illustrates that larger datasets required proportionally more memory and longer encryption times. This 
highlights the computational costs associated with homomorphic encryption, suggesting the need for optimized 
algorithms for large-scale applications. 

3.7. Comparative Analysis of Encryption Algorithms on Computational Load 

To identify the most efficient encryption algorithm, three algorithms (A, B, and C) were tested under similar conditions. 
Performance metrics included CPU utilization, encryption speed, and energy consumption. Results indicated that 
Algorithm C provided the highest encryption speed with moderate CPU utilization. 

Table 5 Performance of Encryption Algorithms on Computational Load 

Algorithm CPU Utilization (%) Encryption Speed (MB/s) Energy Consumption (kWh) 

A 85 4.5 0.35 

B 78 5 0.33 

C 82 6.1 0.31 

 
Table 5 reveals that Algorithm C was the most efficient in terms of speed and energy consumption, despite moderate 
CPU usage. This makes it a viable candidate for future high-performance encryption tasks. 

3.8. Effect of Secure Communication on Data Transmission Quality 

The effect of secure communication protocols on data transmission quality was examined by measuring latency, 
throughput, and packet loss across different communication types. Findings indicated that while secure protocols 
slightly increased latency, they provided robust protection against packet loss. 
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Table 6 Data Transmission Metrics under Secure Communication Protocols 

Communication Type Latency (ms) Throughput (Mbps) Packet Loss (%) 

Standard TCP 12 150 1 

Encrypted TCP 20 140 0.2 

Standard UDP 10 160 3 

Encrypted UDP 18 155 0.5 

 
Table 6 demonstrates that encrypted TCP had the lowest packet loss, though it introduced slightly higher latency 
compared to standard protocols, underscoring a trade-off between security and transmission speed. 

3.9. Fraud Detection Accuracy in High-Risk Billing Codes 

An analysis was conducted to determine fraud detection accuracy within high-risk billing codes. Variables analyzed 
were detection accuracy, false positive rate, and processing time. Results indicate that high-risk billing codes were 
detected with a higher accuracy rate but required longer processing times due to complex patterns. 

 

Figure 4 Detection Accuracy and Processing Metrics in High-Risk Billing Codes 

As shown in Figure 4, fraud detection accuracy was highest in specific billing code ranges, though these codes also 
exhibited a slightly elevated false positive rate, indicating the need for further refinement. 

3.10. Computational Overhead Due to Privacy Enhancements 

The impact of privacy enhancements, such as differential privacy, on system performance was examined by analyzing 
CPU load, memory usage, and overhead percentage. Results showed that higher levels of privacy resulted in increased 
computational overhead. 

Table 7 Computational Overhead Due to Privacy Enhancements 

Privacy Setting CPU Load (%) Memory Usage (MB) Overhead Increase (%) 

None 65 400 0 

Low 70 450 10 

Medium 78 500 18 

High 85 550 25 
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As seen in Table 7, implementing high privacy levels increased both CPU load and memory usage, resulting in significant 
computational overhead. This finding highlights the trade-off between privacy and performance in data-sensitive 
environments. 

3.11. Performance of Fraud Detection Algorithm Across Data Subset Sizes 

The performance of the fraud detection algorithm was tested across varying data subset sizes. The variables included 
subset size, detection rate, and processing efficiency. Larger data subsets showed higher detection rates but required 
more processing resources. 

Table 8 Algorithm Performance across Data Subset Sizes 

Subset Size (MB) Detection Rate (%) Processing Efficiency (MB/s) 

50 87 1.5 

100 89 1.3 

150 91 1.1 

200 93 1.0 

 

In Table 8, detection rates improved with larger data subsets, though efficiency decreased, suggesting resource 
intensiveness in processing large volumes for fraud detection. 

3.12. Encryption and Decryption Times by Library Comparison 

To evaluate the performance of different encryption libraries, encryption and decryption times were measured 
alongside memory usage. Results showed that Library A provided the fastest decryption speed. 

Table 9 Comparison of Encryption Libraries on Performance Metrics 

Library Encryption Time (s) Decryption Time (s) Memory Usage (MB) 

Library A 4.8 2.1 300 

Library B 5.2 2.3 280 

Library C 5 2.4 290 

Library D 5.3 2.2 305 

 

In Table 9, Library A shows the fastest decryption time, which may be beneficial for applications where decryption 
speed is critical. However, each library demonstrates slight trade-offs in terms of memory usage and encryption time. 

3.13. Aggregated Fraud Detection Performance Based on Data Partition Size 

This analysis examined the effect of data partition sizes on model accuracy, training time, and data throughput. The 
results suggest that larger partition sizes yield improved accuracy, though they demand longer training times. 

Table 10 Model Performance Across Data Partition Sizes 

Partition Size (MB) Model Accuracy (%) Training Time (s) Data Throughput (MB/s) 

10 88 3.2 15 

20 90 3.5 16 

30 91 3.7 17 

40 89 3.4 15.5 
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Table 10 indicates that data partitioning at larger sizes contributes to improved model accuracy, albeit with higher 
computational demands. Optimal partition size should be chosen based on available resources and desired accuracy. 

3.14. Comparison of Accuracy with and without Differential Privacy 

To investigate the impact of differential privacy on model performance, accuracy levels were measured with and 
without privacy. Additional variables included the computational overhead introduced by privacy measures. 

 

Figure 5 Model Accuracy with and without Differential Privacy 

Figure 5 shows that while differential privacy slightly decreases model accuracy, the reduction is within an acceptable 
range. This suggests that privacy-enhancing techniques can be implemented with minimal impact on model 
performance. 

3.15. Evaluation of Real-Time Encryption Process Performance Metrics 

The encryption process was tested under real-time conditions with varying data sizes to assess latency, memory 
utilization, and CPU load. Results indicate that larger data sizes contribute to increased latency and resource utilization. 

Table 11 Real-Time Performance Metrics During Encryption Process 

Data Size (MB) Encryption Latency (ms) Memory Utilization (MB) CPU Load (%) 

100 25 600 85 

200 30 750 88 

300 28 700 87 

400 35 800 90 

 

In Table 11, the increase in latency and CPU load at larger data sizes highlights the importance of efficient encryption 
protocols, especially for high-throughput applications in healthcare fraud detection. 

4. Discussion 

4.1. Privacy-Preserving Techniques and Data Leakage Mitigation 

The implementation of homomorphic encryption (HE) and differential privacy (DP) within the data pipeline provided 
significant improvements in data security. Homomorphic encryption allowed operations on encrypted data, thus 
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reducing the risk of unauthorized data exposure, as shown by the low data leakage risk in Table 4. Differential privacy 
further enhanced security by adding controlled noise to the data, significantly reducing the leakage risk for higher 
privacy levels. However, this increase in privacy came at a cost to model accuracy, as greater noise levels could 
potentially interfere with data fidelity, resulting in a minor drop in detection performance, consistent with prior findings 
in the field [27]. The results also demonstrated that high-risk billing codes achieved better precision and recall than 
general codes, suggesting that privacy-preserving techniques may have limited impact on specific data subsets with 
inherently strong fraud indicators. This finding, displayed in Table 5, aligns with established trends in healthcare fraud, 
where high-value claims tend to exhibit more detectable fraud patterns due to the substantial financial incentives 
involved. Nevertheless, balancing privacy and utility remains essential, as high privacy levels can compromise model 
sensitivity in detecting subtle fraudulent activities [28]. 

4.2. Scalability and Computational Overhead of Homomorphic Encryption 

The scalability of homomorphic encryption posed challenges in handling large-scale datasets. Table 6 revealed that 
encryption time and memory usage increased significantly with larger data sizes, indicating that HE can become a 
computational bottleneck, particularly in high-volume healthcare billing environments. Although certain encryption 
libraries, such as Library A, demonstrated faster decryption times with lower memory consumption (Table 12), the 
overall computational overhead of HE suggests that alternative or hybrid encryption models may be necessary for 
broader application. This finding aligns with existing literature, where the resource intensiveness of HE has been 
documented as a limiting factor in large-scale implementations [29]. 

The computational limitations of HE were further underscored by the results in Table 10, where privacy enhancements, 
particularly at higher levels, significantly increased CPU and memory usage. This raises concerns for smaller healthcare 
providers with limited IT resources, as excessive resource requirements could render the system impractical in 
constrained environments. These observations are consistent with prior studies on secure multiparty computation, 
which indicate that high privacy settings can lead to substantial performance overhead, necessitating efficient 
algorithmic and hardware solutions for practical deployment [30]. 

4.3. Federated Learning and Collaborative Fraud Detection Performance 

Federated learning (FL) enabled decentralized model training across multiple nodes, preserving data locality and 
enhancing regulatory compliance. The high accuracy across data subsets in Table 5 highlights FL's adaptability to 
diverse billing data types without necessitating centralized data storage, which is critical for maintaining HIPAA and 
GDPR compliance. However, secure communication during model aggregation presented its own set of challenges, as 
seen in the increased latency and bandwidth usage in Table 8. While encrypted TCP provided robust protection against 
packet loss, it also introduced additional latency, which could impact real-time fraud detection capabilities. 

The trade-offs between privacy and computational efficiency within FL were also apparent when differential privacy 
was applied. Table 14 shows that DP had minimal impact on model accuracy across federated nodes, confirming that FL 
can maintain robust fraud detection performance while integrating privacy-preserving methods. Nonetheless, the slight 
degradation in model accuracy and the increase in computational overhead due to privacy measures align with previous 
studies on privacy-preserving federated learning, suggesting that optimizing secure communication protocols remains 
essential to support scalable and efficient FL applications in healthcare fraud detection [29, 31]. 

4.4. Optimizing Encryption Algorithms and Communication Protocols for Performance 

This study demonstrated that the choice of encryption algorithms and communication protocols has a significant impact 
on the performance of the fraud detection pipeline. Algorithm C, for instance, showed superior encryption speed and 
moderate CPU utilization, outperforming other algorithms in terms of efficiency (Table 7). This suggests that algorithm 
selection can play a crucial role in minimizing computational costs, particularly in real-time applications. Similar 
observations were noted with secure communication protocols; encrypted TCP, despite slightly higher latency, offered 
substantial reliability in packet transmission, as indicated by low packet loss in Table 8. Optimizing these protocols is 
vital, as shown by the latency increases and bandwidth requirements with encrypted data. Future research could 
explore the integration of advanced hardware accelerators, such as GPUs or TPUs, to offset the computational demands 
of HE and FL in healthcare environments. Furthermore, recent advancements in HE algorithms, such as batching 
techniques and reduced-complexity encryption schemes, may offer more practical solutions for scalable fraud detection 
systems without sacrificing security [30]. This potential for optimization is critical, as high-performance encryption and 
secure communication channels are foundational to sustainable and robust fraud detection systems that respect patient 
confidentiality. 
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4.5. Balancing Accuracy and Privacy in High-Risk Billing Code Detection 

The fraud detection algorithm’s performance varied across data subsets, particularly in high-risk billing codes, which 
achieved higher detection accuracy and lower false positive rates (Table 9). This indicates that billing codes associated 
with high-value claims contain stronger fraud indicators, allowing for more accurate detection. However, the 
algorithm’s reduced performance on low-risk codes suggests the need for adaptive model tuning that can optimize 
detection parameters based on billing data characteristics. This adaptive approach aligns with industry observations 
that high-value claims tend to be targeted more frequently, thus yielding clearer fraud patterns [29]. 

Overall, the study underscores the importance of balancing privacy with fraud detection accuracy. While high-risk 
billing codes benefit from robust detection performance, excessive privacy measures could reduce sensitivity in 
identifying nuanced fraudulent activities in low-risk billing codes. Therefore, future iterations of the model may benefit 
from a tiered approach to privacy settings, where privacy levels are optimized based on the type of billing data being 
analyzed, allowing for a more context-aware fraud detection system [31].  

5. Conclusion 

The proposed secure data pipeline effectively integrates homomorphic encryption and federated learning to balance 
privacy and fraud detection accuracy. While homomorphic encryption and differential privacy offer significant security 
advantages, their computational demands present scalability challenges that must be addressed for real-world 
applications. The study’s findings emphasize the need for further optimizations in both encryption algorithms and 
secure communication protocols to enhance processing efficiency and support broader deployment. 
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