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Abstract 

With the increasing adoption of IoT in critical sectors such as automobiles and healthcare, ensuring secure 
communication has become imperative. This paper presents a prototype system for securing MQTT-based 
communication using AES and XOR encryption mechanisms on a Raspberry Pi-based sensor platform. The system 
encrypts sensor data before transmission and decrypts it upon reception, mitigating risks like man-in-the-middle 
attacks. 

We compare the impact of encryption schemes on performance metrics such as latency, throughput, and packet loss 
using tools like Wireshark, iperf3, and MQTT logs. Real-time data from a DHT11 sensor is collected and analyzed under 
multiple test scenarios. Results show a trade-off between security and performance, with AES providing higher security 
and XOR offering lower latency. The system architecture, design decisions, and testing strategies are detailed in this 
paper. The proposed solution serves as a secure and efficient IoT framework for real-world applications in sensitive 
domains. 

Keywords: IoT; MQTT; AES; XOR; Raspberry Pi; Encryption; Man-in-the-middle attack; Latency; Packet loss; 
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1. Introduction

The rise of the Internet of Things (IoT) has transformed multiple sectors including smart transportation, medical 
monitoring, home automation, and industrial control. As these systems increasingly rely on wireless networks and low-
power devices, the threat of man-in-the-middle (MITM) attacks and data interception becomes critical. Communication 
protocols like MQTT (Message Queuing Telemetry Transport) are popular in IoT systems due to their lightweight nature 
and support for publish-subscribe messaging. However, MQTT by default lacks robust security measures like encryption 
or authentication, making it vulnerable to eavesdropping and tampering [1],[2]. 

In mission-critical environments such as connected vehicles and healthcare monitoring systems, the confidentiality and 
integrity of sensor data are paramount. For example, in the medical domain, altered humidity or temperature readings 
could mislead patient care systems [4]. Similarly, compromised telemetry data in automobiles could affect autonomous 
decision-making systems [5]. 

This project proposes a secure MQTT-based IoT framework that encrypts data before transmission using two 
lightweight cryptographic schemes — AES (Advanced Encryption Standard) and XOR (Exclusive OR). The system 
consists of a Raspberry Pi connected to a DHT11 sensor, transmitting encrypted temperature and humidity data to a 
Mosquitto MQTT broker. 

http://creativecommons.org/licenses/by/4.0/deed.en_US
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Performance is assessed using standard networking tools such as Wireshark (for packet loss), iperf3 (for throughput), 
ping (for delay), and MQTT logs (for latency). Test cases cover three scenarios: communication without encryption, with 
AES encryption, and with XOR encryption. The impact of encryption on delay, bandwidth, CPU usage, and reliability is 
analyzed to understand real-world deployment implications. 

This paper documents the complete system design, encryption-decryption logic, MQTT communication stack, test 
scenario evaluations, and a detailed discussion of performance vs. security trade-offs. The objective is to provide a 
lightweight and effective security mechanism suitable for resource-constrained IoT deployments in sensitive 
sectors[6],[7]. 

2. Literature Review 

The security of IoT communication protocols has been the subject of growing research in recent years. Traditional 
MQTT, while efficient for constrained networks, lacks built- in encryption, making it susceptible to data leakage and 
man- in-the-middle (MITM) attacks[1]. Researchers have explored various techniques to secure MQTT communication, 
including TLS/SSL, lightweight cryptographic primitives, and hardware-based encryption. 

Chaudhary et al. (2018) demonstrated the use of TLS with MQTT for securing industrial IoT data but found it introduced 
significant latency and was unsuitable for real- time applications[2]. In contrast, Alaba et al. (2017) analyzed lightweight 
symmetric encryption methods like AES and found them efficient for embedded IoT systems when optimized for 
performance[3]. 

Santos et al. (2019) proposed an end-to-end encrypted MQTT communication using AES on ESP32 microcontrollers. 
Their work showed encryption-induced delays of approximately 20–40 ms, which was acceptable for low-frequency 
sensor applications. However, they did not compare it with XOR or evaluate packet loss[4]. 

Lightweight encryption using XOR, although cryptographically weaker, has been used in environments where 
performance is prioritized over confidentiality. 

Studies by Kumar et al. (2020) noted that XOR encryption offered nearly negligible overhead but lacked resistance to 
reverse-engineering, making it unsuitable for high-security applications[5]. 

Comparative works such as by Bajaj and Rana (2021) have evaluated MQTT against alternative protocols like CoAP and 
AMQP, highlighting MQTT's superiority in simplicity and minimal resource usage. However, these studies also 
emphasized the importance of augmenting MQTT with encryption to ensure data confidentiality[6]. 

Recent advances in monitoring tools like Wireshark, iperf3, and Paho MQTT logs have enabled accurate measurement 
of packet loss, throughput, and latency in secure IoT systems. These tools have been widely adopted in research studies 
focusing on the optimization of secure communication under constrained devices such as Raspberry Pi and Arduino 
boards[7],[8]. 

Despite these efforts, few works have performed side-by- side comparisons of AES and XOR encryption over MQTT 
under realistic sensor data conditions. Our research builds upon the foundations of secure MQTT communication and 
contributes to this gap by evaluating performance metrics and encryption trade-offs under three scenarios — no 
encryption, AES encryption, and XOR encryption — using practical IoT hardware and tools[9]. 

3. Methodology 

The methodology behind the secured MQTT-based communication system focuses on encrypting real-time sensor data 
using symmetric encryption algorithms (AES and XOR) before transmission via the MQTT protocol. The system 
architecture is built around the Raspberry Pi 3 as the sensor node, a DHT11 sensor for collecting environmental data, 
and an MQTT broker for data transmission. This approach aims to ensure data confidentiality, integrity, and reliability 
in sensitive domains such as automotive telemetry and medical diagnostics. 

The system comprises multiple integrated modules including sensor data acquisition, encryption processing, MQTT 
client communication, payload logging, and decryption at the receiver. Comparative performance evaluation is 
performed by running all modules under three conditions: (1) unencrypted raw data, (2) AES-encrypted data, and (3) 
XOR-encrypted data. Each condition includes time-stamped logging for delay and packet loss measurement. 
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3.1. Sensor Data Acquisition 

The system begins with periodic reading of temperature and humidity values from a DHT11 sensor connected to the 
Raspberry Pi 3’s GPIO pin. The Adafruit DHT Python library is employed to poll the sensor every 3 seconds. The readings 
are stored as key-value pairs and then serialized into a string format to ensure compatibility with the encryption and 
transmission modules. {"temperature": 27.5, "humidity": 58.2, "timestamp": "2025- 04-14T12:05:33"} 

The timestamp is generated using the datetime module to support delay calculations between publisher and subscriber 
ends. 

3.2. Encryption and Data Security 

To enhance the privacy of transmitted data, two encryption strategies are implemented: 

3.2.1. AES Encryption Module 

AES-128 is implemented using the pycryptodome library with CBC (Cipher Block Chaining) mode. A predefined 
symmetric key and IV (Initialization Vector) are used for both encryption and decryption. The plaintext data is padded 
using PKCS7 to meet the AES block size requirements. The output is then Base64-encoded to ensure MQTT payload 
compatibility. 

• AES Block Size: 16 bytes 
• Key Size: 128 bits 
• Padding Scheme: PKCS7 
• Mode: CBC 

3.2.2. XOR Encryption Module 

As a lightweight alternative, XOR encryption is implemented using a custom Python function. Each character in the data 
string is XORed with a repeating secret key of fixed length. While not secure by modern cryptographic standards, XOR 
allows for rapid comparisons of latency and resource usage under minimal encryption overhead. 

3.2.3. MQTT Communication Pipeline 

The encrypted or raw data payload is published from the Raspberry Pi client to the MQTT broker hosted on the same 
local network. The MQTT broker (Mosquitto) listens on TCP port 1883. The Paho MQTT Python client is used for both 
the publisher and subscriber scripts. 

Publisher Side (Raspberry Pi) 

• Connects to the broker using a unique client ID. 
• Publishes encrypted/raw payload to a dedicated topic (sensor/data/aes, sensor/data/xor, or 

sensor/data/raw). 
• Logs the timestamp and payload size. 

Subscriber Side (Laptop) 

• Subscribes to the respective topic. 
• Decrypts the payload using the corresponding algorithm (AES/XOR). 
• Parses the data and calculates end-to-end delay using the embedded timestamp. 
• Logs decrypted values, delay, and packet reception time. 

3.2.4. Time Logging and Delay Estimation 

Each payload includes a timestamp at the moment of sensor reading. At the subscriber end, the received timestamp is 
compared with the system time to estimate transmission + encryption delay. The delay is calculated as: 

Delay = Time_subscriber_received - Time_publisher_sent These logs are saved into CSV files for post-analysis. 
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3.2.5. Payload Size and Packet Loss 

To analyze the overhead introduced by encryption, the payload size is calculated for every message: 

• Raw payload (in JSON): ~45 bytes 
• AES payload (Base64-encoded): ~96–128 bytes 
• XOR payload (ASCII string): ~50–60 bytes Packet loss is estimated using Wireshark/Mosquitto logs and 

confirmed by analyzing missing sequence numbers in the log file of the subscriber. Additionally, ping and iperf3 
tools are used to measure network throughput and latency under different encryption conditions. 

3.2.6. Graphical Interface (Optional) 

For visualization and testing convenience, an optional GUI built using Tkinter allows the user to: 

• Select encryption mode (AES/XOR/None) 
• Start/stop publishing 
• Display live sensor readings 
• Export logs in CSV 

3.2.7. System Integration 

All modules are optimized for real-time operation on a headless Raspberry Pi 3 setup, connected via SSH or HDMI to a 
monitor. CPU and memory usage are logged using psutil to analyze system performance under encryption load. 

A cron scheduler or while loop ensures continuous operation without manual intervention. MQTT sessions are 
maintained persistently with automatic reconnection enabled to ensure resilience in case of network fluctuations. 

 

Figure 1 System Architecture Diagram 

This architecture illustrates the secure communication pipeline for sensor data using Raspberry Pi 3, DHT11 sensor, 
MQTT protocol, and encryption methods (AES and XOR). The Raspberry Pi reads sensor values, encrypts the data, and 
publishes it to a Mosquitto MQTT Broker hosted on a local laptop. The subscriber decrypts the data based on the 
encryption method, logs it, and optionally visualizes it through a GUI module. The design supports modular encryption 
selection and real-time performance monitoring, making it suitable for automotive and medical IoT scenarios. 

4. Implementation 

The implementation of the secured MQTT-based communication system is designed to achieve secure, real- time 
transmission of sensor data in environments requiring high confidentiality, such as automotive monitoring systems and 
medical telemetry. The system integrates multiple modules—sensor interfacing, encryption (AES/XOR), MQTT client 
handling, timestamp logging, and decryption—into a seamless communication pipeline. Each component has been 
optimized for low-latency performance and accurate benchmarking. 
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4.1. System Setup and Sensor Integration 

The DHT11 sensor is interfaced with Raspberry Pi 3 through GPIO pin 4. A 10kΩ pull-up resistor is used to ensure signal 
stability. The Raspberry Pi OS (Lite) is installed with Python 3.9 and necessary libraries including Adafruit_DHT, paho- 
mqtt, pycryptodome, and datetime. 

The sensor polling script initiates a loop to read data every 3 seconds. The acquired data includes temperature (°C) and 
humidity (%RH), and is structured into a JSON-formatted string along with a timestamp generated using Python’s 
datetime.now().isoformat() method. This structured payload is then passed to the encryption module. 

 

Figure 2 System Setup 

4.2. AES Encryption Implementation 

For AES encryption, the pycryptodome library is utilized. A 128-bit symmetric key and a 16-byte IV are predefined and 
stored securely in the codebase. The payload string is encoded to bytes and padded using PKCS7 padding to align with 
the AES block size. 

The AES module uses the CBC (Cipher Block Chaining) mode to enhance randomness between ciphertext blocks. The 
output is then Base64-encoded to preserve transmission compatibility over MQTT, which treats payloads as byte 
streams. 

cipher = AES.new(key, AES.MODE_CBC, iv) padded_data = pad(data.encode(), AES.block_size) ciphertext = 
cipher.encrypt(padded_data) 

encoded_ciphertext = base64.b64encode(ciphertext).decode() 

This encoded ciphertext becomes the final MQTT message payload and is published to the topic sensor/data/aes. 

4.3. XOR Encryption Implementation 

In the XOR encryption module, a lightweight symmetric key is used. The plaintext string is iterated character by 
character, and each character is XORed with the corresponding character of the key (repeating cyclically if necessary). 
The result is a new ASCII string, slightly obfuscated but with minimal processing time. 

encrypted = ''.join([chr(ord(c) ^ ord(key[i % len(key)])) for i, c in enumerate(data)]) 

The encrypted data is transmitted on the topic sensor/data/xor. No Base64 encoding is necessary, minimizing payload 
size and processing time. 

4.4. MQTT Publisher and Broker Setup 

The Raspberry Pi acts as the MQTT publisher, running a persistent loop that connects to a locally hosted Mosquitto 
broker. The broker is configured to accept local clients on TCP port 1883. Each message is published with a QoS level of 
1 (at least once delivery), ensuring that every sensor reading reaches the subscriber with acknowledgment. 
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Publisher-side Python script components: 

• Connection initialization (client.connect() with unique client ID) 
• Message publishing every 3 seconds 
• Logging of payload size and timestamp in a CSV file (log_aes.csv, log_xor.csv, log_raw.csv) 

4.5. MQTT Subscriber and Decryption 

On the laptop side, a Python subscriber is launched to listen to the specific topic based on the encryption mode. Upon 
receiving a message: 

• The subscriber parses the encrypted payload. 
• Decrypts the message using the respective algorithm. 
• Extracts and parses the JSON payload. 
• Compares the embedded timestamp with current time to compute delay. 

The decrypted data and calculated delay are logged into a timestamped CSV file, enabling later analysis of latency, delay, 
and packet loss. 

4.6. Logging and Benchmarking 

Both publisher and subscriber record detailed logs: 

• Message count 
• Timestamp sent 
• Timestamp received 
• Decryption time 
• Payload size 
• Delay (in milliseconds) 

Additionally, system-level metrics such as CPU usage, memory consumption, and MQTT message loss are recorded. 
Tools like psutil, ping, and iperf3 are used to measure: 

• CPU load during encryption and transmission 
• Round-trip latency 
• Bandwidth usage 
• Packet loss ratio from broker logs and Wireshark analysis 
• All these measurements are saved in structured CSV format for visualization and comparative study. 

4.7. Optional GUI and Runtime Controls 

An optional GUI using Tkinter is implemented to: 

• Start or stop the publisher 
• Choose encryption type 
• Display live sensor readings 
• Export CSV logs 
• Monitor delay in real-time 

This interface aids in manual testing, demonstrations, and user-friendly control of the MQTT sessions. 

The overall data transmission process follows the flow described below, illustrated in the corresponding system 
flowchart: 

• Sensor Reading: The Raspberry Pi reads temperature and humidity values from the DHT11 sensor at defined 
intervals (e.g., every 2 seconds). 

• Timestamp Generation: A timestamp is generated immediately after sensor data retrieval to track data 
freshness and compute delay later. 

• User-Selected Encryption 
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o AES Encryption: If AES is selected, the data is encrypted using a predefined AES key and initialization vector 
(IV). After encryption, Base64 encoding is applied to convert the binary ciphertext into a string format 
compatible with MQTT message payloads. 

o XOR Encryption: A lighter, symmetric encryption method, XOR applies a byte-wise operation with a static key 
to obfuscate the sensor data. Since the output remains text- friendly, Base64 encoding is typically not required. 

o MQTT Publishing: The encrypted payload is published to a specified MQTT topic using the Paho MQTT client. 
Quality of Service (QoS) levels can be configured as needed. 

o Logging: For each transmission, metadata including the encryption type, payload size (in bytes), and time delay 
(from reading to publishing acknowledgment) is logged in memory and optionally saved to a CSV. 

o Feedback to GUI: Status messages, live data, and metrics are pushed back to the GUI for display. 

 

Figure 3 System Flowchart Diagram 

This flowchart illustrates the end-to-end process of data encryption and transmission from the Raspberry Pi. After 
reading temperature and humidity values from the DHT11 sensor, a timestamp is generated and the user-selected 
encryption algorithm (AES or XOR) is applied. In the AES path, additional Base64 encoding is performed to ensure MQTT 
compatibility. The data is then published to the MQTT broker, and relevant metadata such as payload size and 
timestamp is logged for later analysis. 

5. Results and Analysis 

The secured MQTT-based communication system was evaluated across multiple metrics, including transmission delay, 
payload size, packet loss, CPU usage, and overall reliability under three configurations: (1) unencrypted raw data, (2) 
AES-encrypted data, and (3) XOR-encrypted data. The goal was to assess how encryption impacts real-time sensor 
communication in automotive and medical use cases, where both security and responsiveness are critical. 

5.1. Experimental Setup 

Testing was performed on the following hardware: 

• Publisher Node: Raspberry Pi 3 Model B+ (1.4GHz CPU, 1GB RAM) 
• Subscriber Node: Laptop with Intel Core i5, 8GB RAM 
• Broker: Mosquitto MQTT Broker running locally on the subscriber laptop 
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• Sensor: DHT11 (Temperature and Humidity Sensor) 
• Network: Local Wi-Fi LAN 

Each configuration (AES, XOR, Raw) was tested over a 30- minute continuous period, sending data every 3 seconds. All 
messages included a timestamp to calculate latency. Data was logged into separate CSV files and analyzed post-run using 
Python’s pandas and matplotlib. 

5.2. Transmission Delay 

The average end-to-end delay for each message was computed as the difference between the publisher’s embedded 
timestamp and the subscriber’s receipt time. 

 

Figure 4 Latency Comparison Graph 

• Observation: This graph shows that AES has the highest average transmission delay due to encryption 
overhead, followed by XOR and raw modes. 

5.3. Payload Size Analysis 

To assess network load, the payload size for each message was logged and averaged. 

 

Figure 5 Latency Comparison Graph 
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• Observation: AES payloads are largest due to Base64- encoded ciphertext, while raw data is minimal in size. 

5.4. Packet Loss Rate 

Packet loss was analyzed using broker logs and confirmed via missing message timestamps in the subscriber log. 

 

Figure 6 Latency Comparison Graph 

• Observation: AES results in higher packet loss due to large message size and encoding delay under network 
load. 

5.5. CPU and Memory Usage 

CPU usage was recorded using psutil on Raspberry Pi during publishing. 

• Observation: This table compares the average CPU and memory usage of AES, XOR, and raw data publishing 
modes measured on Raspberry Pi 3 during real-time MQTT transmission. 

 

Figure 7 Compares the average CPU and memory usage 
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5.6. Real-Time Performance and Reliability 

 

Figure 8 Decrypted temperature Graph 

This graph compares 10 decrypted temperature readings for AES, XOR, and raw modes, showing encryption does not 
distort sensor accuracy. 

The subscriber successfully decrypted and parsed all received data across AES and XOR modes without runtime errors. 
The integrity and correctness of the transmitted data were verified by comparing logs of decrypted payloads. AES 
decryption introduced an average additional delay of ~10 milliseconds per message, while XOR processing remained 
nearly instantaneous. 

Screenshots from the optional GUI module demonstrate live sensor readings, encryption selection, and real-time 
monitoring. Time plots generated from CSV logs further illustrate the consistency of data publishing and the 
effectiveness of the decryption pipeline. 

5.7. Visual Output Snapshots 

 

Figure 9 AES Encryption and Decryption Logs 
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Figure 10 XOR Encryption and Decryption Logs 

 

 

Figure 11 Raw MQTT Transmission Output 

6. Conclusion  

This project successfully demonstrates a lightweight yet robust framework for securing MQTT-based communication 
using real-time encryption techniques implemented on a Raspberry Pi 3 and tested with a DHT11 sensor. The system 
addresses one of the most critical challenges in IoT and embedded communication—ensuring data security in 
constrained environments, such as automobile control systems and medical monitoring networks, where breaches can 
have serious real-world consequences. 

Through the integration of AES and XOR encryption techniques, combined with a structured MQTT communication 
pipeline, the system ensures confidentiality and integrity of sensor data. The experimental evaluations revealed that 
while AES offers superior security through strong symmetric cryptography, it introduces notable processing delays and 
payload overheads. XOR, on the other hand, provides minimal computational load and fast processing, making it a viable 
candidate for applications with less stringent security requirements or limited resources. 

The comparative analysis across multiple parameters—end- to-end delay, CPU usage, payload size, and packet loss— 
proves the system’s ability to maintain secure and efficient real-time data transmission. The use of timestamp-based 
delay computation and CSV-based logging ensures accurate benchmarking of performance under different encryption 
scenarios. Furthermore, the optional GUI interface and modular Python scripts make the system flexible for lab 
experimentation, live demos, or further extension. 

One of the major strengths of this system is its portability. With minimal hardware (a Raspberry Pi and a DHT11 sensor), 
the system can be deployed in edge environments 

• Automotive systems: Monitoring engine temperature, humidity, or cabin air quality, ensuring encrypted 
telemetry to vehicle ECU or cloud systems. 

• Medical systems: Transmitting patient vitals securely to a monitoring dashboard or electronic health records 
(EHR) system, especially in telehealth or wearable device ecosystems. 
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• However, certain limitations are acknowledged. AES, although secure, incurs computational costs that may not 
be ideal for battery-powered nodes. XOR, while faster, does not provide resistance against advanced attacks 
like ciphertext analysis or replay attacks. Also, packet loss increases slightly with AES under network 
congestion, which may affect data consistency in real-time applications. 

6.1. Future work 

To extend this foundation, several enhancements are envisioned: 

• Dynamic Encryption Selection: Implementing an adaptive algorithm that switches between AES, XOR, or no 
encryption based on system load, data sensitivity, or network congestion in real time. 

• TLS Integration: Enhancing MQTT transport layer with TLS 1.2 or 1.3 to offer end-to-end channel security in 
addition to payload-level encryption. This will allow defense-in-depth against man-in-the-middle (MITM) 
attacks. 

• Multiple Sensor Integration: Expanding the architecture to support multiple sensors (e.g., motion, light, gas 
sensors) simultaneously publishing to different MQTT topics. This would mimic more realistic deployments 
such as smart cars or hospital ICU units. 

• Security Analysis via Wireshark and Iperf3: Including packet sniffing and throughput tools to visualize 
encryption impact on packet structure and bandwidth, thereby validating resistance to common attacks such 
as eavesdropping or spoofing. 

• Authentication and Replay Protection: Adding timestamp nonce validation or hash-based message 
authentication codes (HMACs) to resist replay attacks and authenticate message origin. 

• Cloud Integration: Migrating the broker to a secure cloud MQTT service (e.g., HiveMQ, AWS IoT Core) for wider 
accessibility and analysis of latency in WAN environments compared to LAN. 

• Web/Mobile Dashboard: Creating a Flask or React-based dashboard that displays real-time decrypted data and 
system status from the MQTT subscriber, enhancing usability and remote monitoring. 

• Power Efficiency Optimization: Profiling power consumption of each encryption scheme on Raspberry Pi to 
guide deployments in solar- powered or battery-operated devices. 

In conclusion, this project lays the groundwork for secure and intelligent sensor communication in critical industries. 
With increasing adoption of connected systems in both vehicles and healthcare, embedding lightweight encryption and 
secure MQTT protocols becomes a necessity. The demonstrated solution not only contributes to academic 
understanding but also holds practical value in designing next-generation secure IoT systems. As threats to data privacy 
and system integrity continue to evolve, so must the systems built to protect them—this project represents a strong, 
scalable, and efficient step in that direction.  
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