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Abstract

U.S. crop residue is a major underutilized bioenergy resource, yet current national models often rely on outdated data
or broad assumptions, limiting localized planning for renewable energy and soil conservation. This study uses machine
learning to quantify and classify county-level agricultural residue generation across the U.S. An XGBoost regression
model achieved R? = 0.69, showing that cropland acreage, USDA-estimated residue supply, local biorefinery potential,
and regional clustering together explain much of the variation in predicted biopower potential. A Random Forest binary
classifier reached ~83% balanced accuracy in identifying high- versus low-residue counties, while multiclass
classification of residue behavior clusters achieved ~57% accuracy, with strongest performance in moderate-output,
small-acreage areas. These findings highlight clear spatial patterns: high-residue counties are concentrated in the
Midwest corn belt, while other regions display mixed or lower-output profiles. Corn was the primary contributor to
residue volume, far surpassing crops like wheat and soybeans. The resulting reuse readiness maps provide actionable
insights for farmers, policymakers, and renewable energy planners, offering a scalable tool to guide sustainable
bioenergy investment while supporting long-term soil health and circular economy goals.

Keywords: Agricultural residue; Biopower potential; Machine learning; EPA repowering data; Xgboost; Circular
Bioeconomy

1. Introduction

The transition to sustainable energy has intensified interest in biomass, with modern bioenergy (e.g. power and fuels
from organic residues) already supplying a significant share of global renewables (Syeda Nyma Ferdous,
2023).According to the IEA, modern bioenergy (excluding traditional biomass) accounts for roughly 55% of global
renewable energy (about 6% of total energy supply) and is growing ~4% per year (IEA, 2025). To meet net-zero climate
goals, deployment must accelerate (projected 8% annual growth through 2030) (IEA, 2025). In parallel, circular-
economy principles emphasize recapturing waste as a resource (J Aravind Kumar, 2023). For agriculture, this means
recycling crop residues and organic by-products to reduce greenhouse gases and conserve resources. Major
assessments indicate vast untapped biomass potential: the U.S. Bioenergy Technologies Office estimates the country
could sustainably mobilize on the order of 1 billion dry tons of biomass annually under mature market conditions
(Bioenergy, 2024), of which hundreds of millions of tons are agricultural residues. For example, corn stover alone has
an estimated unused potential of ~175 million tons/year (Bioenergy, 2024). Reusing these residues for electricity or
biogas can displace fossil energy and align with several SDGs (clean energy, climate action, responsible production) (J
Aravind Kumar, 2023).
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At the federal level, U.S. policy has historically supported agricultural bioenergy. In recent years, USDA initiatives have
promoted blending infrastructure for ethanol and biodiesel made from homegrown crops (USDA P., 2025), and EPA
has worked to set renewable fuel blending volumes (RFS) that influence feedstock demand. Under the Trump
administration, USDA released funding for biofuel infrastructure (e.g. pumps for E15/E85 ethanol blends) to “increase
domestic, homegrown fuels” and create rural jobs (USDA P., 2025). EPA’s 2025 agenda under the same administration
emphasized clearing a backlog of small-refinery waivers in the RFS and setting higher blending targets for advanced
biofuels (Stephanie Kelly, 2025). Meanwhile, the EPA’s RE-Powering America’s Land initiative curates a nationwide
database of approximately190,000 brownfields, landfills, and mines screened for renewable energy potential (EPA,
2022), including layers for biomass feedstock. These policies and programs underscore the strategic role of farm waste
in energy security and rural economic resilience, yet they also highlight a need for detailed maps of where and how
biomass can be repurposed.

Despite the abundant data, few studies have mapped agricultural waste flows and energy potential at the county level
using modern analytics. Past work has clustered U.S. counties by crop production profiles (Courtney R. Hammond
Wagner, 2019) or modeled sustainable residue removal rates for specific locations (Syeda Nyma Ferdous, 2023), but a
gap remains in predicting biopower capacity from recent national data. This paper addresses that gap by combining
real 2022 datasets with machine learning to predict and classify biopower potential in U.S. counties. We use clustering
to reveal regional patterns of crop residue generation and XGBoost models to estimate electricity capacity from these
wastes, thereby identifying “reuse readiness” for agricultural residues across the rural landscape.

Agricultural waste streams include field residues (stems, stalks, leaves), processing byproducts (cull produce, hulls),
animal manures, and other organic discards. These residuals contain stored solar energy and nutrients, and their scale
is immense. The DOE’s Billion-Ton Reports indicate that U.S. agricultural residues have significant potential as a
bioenergy resource, with estimates of hundreds of millions of dry tons available annually under various scenarios. For
example, one DOE scenario projects ~175 million tons per year of collectable agricultural residues (primarily corn,
soybean, and small-grain straw) in a mature market (Energy, 2023). Such quantities could theoretically generate many
gigawatts of renewable power if harnessed efficiently. Currently only a fraction is used: U.S. bioenergy (including
ethanol, cellulosic fuels, biomass power) provides about 5% of domestic energy (Bioenergy, 2024), while large residue
stocks remain unexploited.

Environmental considerations make residue reuse attractive. Leaving excess crop residue on fields can harm soil and
air quality (fire, methane), whereas controlled removal for energy (e.g. anaerobic digestion, combustion) can reduce
greenhouse gas emissions and replace coal or gas. The Food and agriculture Organization of the UN explicitly advocates
a “circular agriculture economy” that minimizes waste and closes nutrient loops by recycling agricultural byproducts
back into production or energy use (UN, 2025). Similarly, Kumar et al. note that global energy policy is shifting toward
systems where waste biomass is economically valorized to meet energy needs while limiting ecological damage (]
Aravind Kumar, 2023). Using residues for power aligns with multiple UN Sustainable Development Goals (SDG7 for
clean energy, SDG12 for sustainable production, SDG13 for climate (UN, 2025).

On the economic side, converting waste to energy can generate rural income and jobs. USDA reports emphasize that
biofuel and biopower projects using American-grown feedstocks broaden the market for farmers, diversify the nation’s
energy supply, and create good-paying jobs in rural areas (USDA P., 2025). For instance, USDA’s Higher Blends
Infrastructure Incentive Program (HBIIP), established during the Trump era, expanded pumps and storage for mid-level
ethanol blends (E15/E85) and biodiesel (B20) made from corn and soy (USDA P., 2025). Such programs were explicitly
designed to “increase domestic, homegrown fuels” and restore rural prosperity (USDA P., 2025). Likewise, crop residues
can be co-fired at biorefineries or used onsite in farm-based digesters, adding revenue streams for growers. The
interplay of energy and agriculture policy thus supports residue reuse but requires spatial tools to target where
investments yield the greatest benefits.

Agricultural fields in the United States produce huge amounts of leftover plant material (crop “waste” or residues) every
year, on the order of half a billion tons (Andrews, 2006). Left in the field, these residues protect soil from erosion,
conserve moisture, and build organic matter (Epa.gov, n.d.). But crop residues can also be collected as a renewable
energy source (for example, in cellulosic biofuel or biopower plants). This study used real 2022 government data (USDA
crop statistics and EPA resource data) and modern data analytics to understand where these residues are generated
and how much could be available for energy without harming the soil.

First, we grouped U.S. counties and crops into clusters with similar residue production patterns. We found that

Midwestern states, which are known for high corn production, formed a “high residue” cluster, reflecting corn’s well-
established role as a major residue source. Other clusters correspond to regions growing more wheat, soy, or mixed
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crops, which produce moderate or lower residues. Then we trained a machine-learning model (XGBoost) to predict
residue quantity and energy potential using variables such as county-level residue estimates, farm size (acreage), and
biorefinery residue data. The model performed well in tests, suggesting it can reliably estimate waste generation across
different regions.

The key findings are that residue generation varies considerably across U.S. regions, dominated by corn in the Midwest,
and that data-driven models can accurately forecast it. For farmers and land managers, these insights can guide early
decisions about which fields may be suitable for residue collection based on overall supply. However, site-specific
assessments of soil health and conservation needs would still be required to determine safe removal rates. For example,
our results support using conservation guidelines that recommend retaining some fraction of residues on every field
(as NRCS practice standards do) (Andrews, 2006). In practice, planners can use our maps and model to identify counties
or areas with high biomass availability for bioenergy projects, while ensuring enough residue remains (following
USDA/NRCS site-specific advice) to prevent erosion and maintain soil fertility. Essentially, providing a practical tool and
knowledge base to balance renewable energy goals with sustainable soil management.

2. Literature Review

Recent research demonstrates the growing role of machine learning in analyzing biomass systems and supporting
sustainable resource use. (Syeda Nyma Ferdous, 2023) developed a deep ensemble ML framework that predicts
sustainable crop residue removal while accounting for soil quality and environmental trade-offs. Their model achieved
high predictive accuracy in evaluating safe harvest thresholds, enabling conservation-aware residue utilization
planning. In abroader scope, (Hyojin Lee, 2024) conducted a comprehensive review of ML techniques used in predicting
bio-oil yields from lignocellulosic biomass pyrolysis, showing how tree-based models like Random Forest and XGBoost
enhance prediction of energy content and feedstock conversion efficiency. These examples reflect the power of ML,
particularly ensemble algorithms, in capturing nonlinear relationships across complex agricultural and environmental
datasets. While the review by (Hyojin Lee, 2024) emphasizes downstream conversion efficiency, (Syeda Nyma Ferdous,
2023) focuses on upstream biomass availability and soil health, together showcasing the full potential of ML across the
biomass supply chain.

Geospatial clustering has also been applied to agricultural classification. For instance, Hammond (Courtney R.
Hammond Wagner, 2019) used k-means clustering on acreage data from 21 USDA crops to generate county-level
typologies across the U.S. Their study revealed agroecological zones like the Corn Belt and Rice Belt, offering a spatial
lens on crop specialization and supply. While their method aimed at general crop pattern analysis, our work focuses
more specifically on residue potential, leveraging clustering to identify groups of counties with similar waste-generation
profiles. Related studies like the DOE’s Billion-Ton assessments (Energy, 2023) and satellite-enabled crop residue
estimations have mapped regional biomass supply. These datasets are useful for understanding overall agricultural
waste availability but often lack the machine learning, driven predictions needed to support localized residue planning
and reuse.

The role of bioeconomy in sustainability transitions has also been emphasized. Global policy literature from the FAO
and IEA highlights that repurposing agricultural waste is key to achieving sustainable development goals, particularly
in the post-COVID era (UN, 2025) (IEA, 2025). These reports frame circular bioeconomy (CBE) as a model for reducing
waste and creating value from residue streams. Within the U.S. context, federal documents and CRS briefs (Bracmort,
2015) have defined biopower as energy generated from organic waste and biomass, emphasizing government
incentives such as renewable energy tax credits and infrastructure support. Our work complements these discussions
by providing a data-driven view of where residues are generated and how they could contribute to decentralized clean
energy networks under such policy frameworks.

Several studies illustrate how remote sensing and ensemble ML can be paired for residue mapping. (Shoaib Ahmad
Anees, 2014) integrated Landsat-9 satellite data with elevation features and trained Random Forest and XGBoost
models to estimate forest aboveground biomass in Himalayan regions. The resulting model yielded strong accuracy (R?
up to 0.81), validating the combination of satellite imaging and ML for spatial biomass prediction. In a related
application, (Nan Lin, 2024) estimated maize residue cover using UAV and Sentinel-2 imagery. They applied an adaptive
threshold segmentation method and used CatBoost regression on selected vegetation indices to predict stubble
coverage with R? ~ 0.83. These studies confirm that ensemble ML, when combined with remote sensing, offers strong
predictive capabilities, but they often remain context-specific, such as forest ecosystems or maize plots. In contrast, our
study applies machine learning at national scale with publicly available structured crop production data, targeting
broader regional forecasting rather than site-specific remote sensing.
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On the spatial modeling side, GIS-based workflows have been widely used to map crop residue potential. (Avinash
Bharti, 2021) reviewed geospatial methods for biomass and bioenergy potential estimation, identifying best practices
in using soil, land use, and topographic layers to map available feedstock. (Abhishek Chakraborty, 2022) developed a
high-resolution (1-km) mapping framework for India by combining agricultural production statistics with satellite-
derived crop-class maps. Their geoportal “BHUVAN-JAIVOORJA” visualizes biomass supply at district level, helping
planners identify optimal regions for biomass-based plant siting. Similarly, (Abel Rodrigues, 2025) studied Portugal’s
Alentejo region by modeling calorific potential from straw residues and validating crop-area models with field surveys.
Their analysis found that using just half the available straw could supply ~12.5% of regional energy demand. These
studies emphasize how GIS mapping, when combined with empirical or modeled data, can support decision-making for
localized energy production, although many models assume fixed residue ratios and static land use.

Geospatial clustering tools are increasingly applied to agricultural monitoring. (Simone Pascucci, 2018) used functional
PCA-based clustering on Landsat time-series to segment agricultural fields into consistent intra-field “yield zones.”
Their results show that functional clustering offers more stable patterns over time than standard k-means, supporting
precision agriculture applications. (Akram Zaytar, 2024)introduced a no-code platform “Sims” built on Google Earth
Engine to facilitate clustering and spatial similarity analysis across raster layers. In simulations using maize yield data
from Rwanda, Sims generated clear cluster maps and supported interactive analysis. These tools demonstrate the value
of clustering not just for classification, but also for practical site-level interpretation of agricultural performance.

A growing body of work connects agricultural residue management with broader circular bioeconomy goals. (Haruna
Sekabira, 2024) conducted household surveys in African city-regions to assess how circular practices like composting
and livestock feeding of crop residues influence food security. Their regression analysis showed that integrating organic
waste reuse into local systems improved soil quality and household income, enhancing both environmental and social
resilience. (Bhim Singh, 2024) developed predictive models for crop residue generation in India through 2030, showing
the relevance of machine learning in supporting long-term residue forecasting for energy and waste planning. (Stamatia
Skoutida, 2024) evaluated Greece’s agricultural biomass supply and concluded that residues could offset nearly 8% of
the country’s energy needs. These findings emphasize the importance of predictive tools not just for energy resource
mapping, but also for improving sustainability outcomes across sectors, from climate mitigation to food security.

Table 1 Summary of Key Literature Reviewed on Agricultural Residue Mapping and Bioenergy Potential

Literature Title | Author(s) Method Description | Strength Weakness

(linked)

Integration of machine | Shoaib A. | Landsat-9 OLI bands | High accuracy | Focused on one forest
learning and remote | Anees et al. | and DEM features | (R?~0.81 RF) by | biome; results depend
sensing  for  above | (2024) used with Random | combining on quality of field
ground biomass Forest and XGBoost | multispectral and | samples.

estimation through regression to model | terrain data; open-

Landsat-9 and field data forest AGB. source data.

in temperate forests of
the Himalayan region

Estimation of Maize | Nan Lin et al. | UAV images + | Integrates UAV and | Case study scale (one
Residue Cover Using | (2024) Sentinel-2 spectral | multispectral  data; | region); transferability
Remote Sensing Based indices; Yen threshold | achieved R2x0.83, | to other regions/crops
on Adaptive Threshold segmentation for | improving  residue | is unclear.
Segmentation and cover mask + CatBoost | detection.

CatBoost Algorithm regression for

coverage fraction.

GIS Application for the | Avinash Review of GIS-based | Comprehensive Review only (no new
Estimation of Bioenergy | Bharti et al. | methods (land use | overview highlighting | analysis); broad
Potential from | (2021) maps, remote sensing, | the role of spatial | statements but limited
Agriculture  Residues: databases) to quantify | analysis in residue | quantitative detail.
An Overview agricultural residue | resource assessment.

potentials.
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Developing a spatial
information system of
biomass potential from
crop residues over India

Abhishek
Chakraborty
etal. (2022)

Hybrid GIS approach:
district crop statistics
+ surveys to get
residue; AWIFS land-
cover + MODIS GPP to
downscale to 1Kkm;
built web geoportal.

Produces high-
resolution maps of
residue and
bioenergy potential;
identified key regions
(e.g. Punjab).

Depends on fixed
residue/surplus

assumptions; requires
periodic ground

surveys to update.

A GIS-Based Estimation | Anténio GIS-based  cropping | Field-validated Regional scope
of Bioenergy Potential | Cordeiro & | suitability model: | allocation; quantifies | (Alentejo);
from Cereal and Legume | Paulo  Brito | assign optimal | region-specific methodology depends
Straw Biomasses in | (2025) cereal/legume areas; | energy (#2940 T] | on assumed yields and
Alentejo, Portugal apply field-validated | from surplus straw). | straw uses.
yields and calorific
values to compute
straw energy.
A Comparison between | Simone Applied k-means, | Functional clustering | Computational
Standard and Functional | Pascucci et al. | functional k-means, | captured more | complexity: tested on
Clustering (2018) PCA clustering to | within-field limited fields in Italy.
Methodologies: Landsat time-series | variability and
Application to from fields; compared | matched yield
Agricultural Fields for clusters to measured | differences better
Yield Pattern yields. than simple k-means.
Assessment
Sims: An Interactive | Akram Zaytar | No-code GEE web-app | User-friendly, open- | Demonstrated on
Tool for Geospatial | etal. (2024) for clustering and | source tool for spatial | simulated/small data;
Matching and Clustering similarity search on | feature exploration; | real-world utility and
spatial layers; | flexible clustering of | scalability need
demonstrated on | multi-variate maps. further evaluation.

simulated maize yield
data.

Circular  bioeconomy
practices and their
associations with

household food security
in four RUNRES African
city regions

Haruna
Sekabira et al.
(2024)

Survey data and
OLS/PSM regression
linking circular

bioeconomy activities
(compost, feed, waste
sorting) to  food
security indicators.

Empirical link of
residue-reuse
practices to improved
food access;
highlights socio-
economic benefits of
residue recycling.

Social/economic focus
(not a spatial/ML
model); context-
specific (African cities)
and not directly about
biomass mapping.

The Latent Potential of
Agricultural Residues in

Circular Economy:
Quantifying their
Production Destined for
Prospective Energy

Generation Applications

Stamatia
Skoutida et al.
(2024)

Quantified the energy
potential of
agricultural residues
(e.g., straw, stalks) in
Greece using national
production statistics.

Estimated that
residues could meet
~8% of Greece’s
energy demand;

strong link to circular
bioeconomy policy.

Focused on Greece;
does not integrate ML
or high-resolution
spatial models.

2.1. Data Collection and Management

We leveraged two complementary national datasets. First, the USDA’s 2022 crop production data (via NASS Quick Stats)
provide authoritative county-level statistics on crop yields and acreage across the U.S. (USDA, United States Department
of Agriculture, 2022). This supply-side data allows estimation of how much biomass (e.g. corn stover, wheat straw) is
potentially available in each region. Second, EPA’s RE-Powering Mapper dataset provides site-level information for
roughly 190,000 brownfields, landfills and other underused sites screened for renewable energy potential (EPA, 2022).
These records include geolocations, acres, and estimated biomass resources nearby (e.g. cumulative crops and woody
residues within 50 miles). Merging USDA and EPA data is methodologically robust and evidence-based, as the two
datasets address distinct yet complementary aspects of bioenergy potential: USDA data quantify the resource supply,
(crop residues), while the EPA data encode site feasibility (infrastructure and local biomass constraints). For example,
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the EPA data even include flags like “Biopower Facility Potential” to mark sites pre-screened as suitable for biopower
development (EPA, 2022), illustrating how it encodes renewable energy readiness. By joining crop-residue supply
estimates with geospatial site attributes, we create an enriched dataset linking waste availability to likely deployment
sites.

A random subset of 5,000 sites was drawn from the ~190,000 EPA records to form the core modeling dataset.
Subsampling was used primarily for computational efficiency - training machine learning models on thousands rather
than hundreds of thousands of points greatly reduces runtime. It also aids data quality control and balance, since we
can manually inspect and clean a smaller sample. Importantly, the 5,000 sites were selected at random, ensuring that
the sample remains broadly representative of the full data distribution (in terms of geography, site types, and biomass
levels) while still being tractable. In practice, large-scale spatial studies often use random sampling to retain statistical
representativeness while managing data volume.

We then constructed features by combining USDA and EPA attributes. It was critical to convert crop production figures
into residue mass, because crop residues (stalks, husks, etc.) are the actual feedstock for bioenergy. Grain yields alone
do not directly translate to usable biomass; instead, each crop has a residue-to-production ratio. For example, corn
production yields substantial stover mass in addition to grain. Crop residues are a well-known lignocellulosic resource
for fuel production (Xinliang Xu, 2013), so we applied standard residue-to-yield factors to each crop’s production data.
In other words, for each crop type we estimated the dry tons of residue generated per unit of grain. This conversion was
essential to quantify the true bioenergy feedstock available. We focused on the top 10 commodity crops by production
in the U.S. (barley, oats, soybeans, sorghum, corn, rye, rice, cotton, sugar beets, and wheat), which collectively account
for the majority of U.S. cropland output. For each of these crops, we calculated the residue mass by applying established
residue-to-production ratios (i.e. the fraction of harvested crop that remains as residue) from the literature ( (Paul W.
Gallagher, 2003); (R. L. Graham, 2007). These ratios vary by crop and reflect typical relationships between yield and
leftover plant material. For instance, corn has a ratio of 1.5; indicating that for every ton of corn produced, about 1.5
tons of residue remain, while soybeans have a lower ratio of 1.2. In practice we multiplied each county’s crop yield by
the crop-specific residue fraction to estimate biomass residue, consistent with prior studies of bioenergy supply. The
ratios for the crops are seen in the table below.

Table 2 Residue Ratio

Crop (Commodity) | Residue Ratio (Residue/Production)
BARLEY 1.3
CORN 1.5
COTTON 2.0
OATS 1.3
RICE 1.5
RYE 1.4
SORGHUM 1.4
SOYBEANS 1.2
SUGARBEETS 1.1
WHEAT 1.3

After merging the USDA and EPA datasets by location, we performed standard data cleaning. We first removed duplicate
records and redundant columns (for example, we dropped any crop-residue fields coming from the EPA data to avoid
duplication of USDA-based estimates). Missing values for variables such as site acreage were imputed using median
values from similar sites (e.g. by cluster). We also examined the distributions of key variables: both acreage and residue
quantities were highly right-skewed. To normalize them, we applied a logarithmic transformation to these skewed
features before modeling. The resulting cleaned dataset consisted of 1,389 records, each with multiple variables
(including residue, acreage, crop type, state, latitude, EPA biopower potential, etc.) and was used for our machine
learning analyses.

The final cleaned dataset (aggregated by county or site) included the variables listed in Table 1. Each record consists of

location identifiers (state, county), spatial coordinates, and averaged numerical features derived from the merged data.
For example, avg_usda_residue is the average annual crop residue (in metric tons) estimated from the USDA production
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data for the record’s location. avg_biopower_potential is the average cumulative biomass (metric tons/year within 50
miles) relevant to biopower, drawn from the EPA data (combining crop and woody residues). Similarly,
avg _biorefinery_residues captures biomass resources used for biorefinery potential. The avg biopower_facility and
avg_biorefinery_facility are indicators (from EPA) of whether the site is potentially suitable for a biopower or
biorefinery plant. avg_acres is the average cropland area (acres) for the relevant crops, latitude and longitude give the
site coordinates, and count_records is the number of underlying observations aggregated. We also include log-
transformed versions of skewed variables (e.g. log avg usda_residue = log(1 + avg usda_residue)) to normalize
distributions for modeling.

Table 3 Description of the final model input variables (aggregated per county/site)

Variable Description

state U.S. state of the record (from USDA/EPA datasets)

county U.S. county of the record (from USDA/EPA datasets)

avg usda_residue Average annual agricultural residue supply (metric tons) estimated from USDA crop
production using standard residue-to-yield ratios

avg_biopower_potential Average available biomass (tons/year within 50 miles) for biopower (includes crop
and woody residues, from EPA data)

avg_biopower_facility Indicator of biopower plant potential (e.g. binary flag from EPA: 1 if site is pre-
screened as suitable for biopower)

avg_biorefinery_facility Indicator of biorefinery plant potential (from EPA data)

avg_biorefinery_residues Average available biomass (tons/year) relevant to biorefinery potential (from EPA

cumulative residue data)

avg_acres Average cropland area (acres) for the included crops (from USDA data)
latitude Latitude of the site or county centroid (degrees)

longitude Longitude of the site or county centroid (degrees)

count_records Number of underlying data records contributing to this aggregated entry
log_avg_usda_residue Natural log of (1 + avg_usda_residue) - used to reduce skew in modeling

log_avg_biopower_potential | Natural log of (1 + avg_biopower_potential)

log_avg_biorefinery_residues | Natural log of (1 + avg_biorefinery_residues)

log_avg_acres Natural log of (1 + avg_acres)

3. Results

We conducted three types of ML analyses: unsupervised clustering to identify regional patterns, regression to predict
residue volumes, and classification to label sites by biopower potential or cluster membership.

Unsupervised clustering: We applied k-means clustering (with $k=3$) on features including USDA-derived residue
volume, site acreage, EPA-estimated biopower potential, and geographic attributes (e.g. latitude/state). This
segmentation revealed three distinct cluster “types” of counties:

Table 4 Cluster table
Cluster Avg USDA Residue | Avg Biopower Avg Acres Counties
High Residue - Moderate Acreage | High (~9M) High (1.1M) Moderate (166) | 343
Lower Residue - Large Acreage Lower (~6.8M) Lower (960k) Large (1,027) 256
Moderate Residue - Small Acreage | Moderate (~7.5M) | Moderate (994k) | Small (60) 790
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o  C(Cluster 1: High Residue - Moderate Acreage (343 counties). These areas have moderate farm size (average ~166
acres) but very high agricultural residue (roughly 9 million tons total) and high biopower potential (~1.1
million tons) These are often intensive, residue-rich agricultural regions.

e Cluster 2: Lower Residue - Large Acreage (256 counties). These regions have very large average acreage
(~1,027 acres) but lower residue production (~6.8 million tons) and lower biopower potential (~0.96 million
tons). In other words, farms are big but less residue per area (e.g. pasture or range areas).

e  Cluster 3: Moderate Residue - Small Acreage (790 counties). These comprise numerous small farms (~60 acres
average) with intermediate residue volumes (~7.5 million tons) and biopower (~0.99 million tons). This
cluster is the largest by count, reflecting many small-acreage counties.

These clusters help reveal geographic patterns: for example, Cluster 1 areas are prime targets for bioenergy because
they yield a lot of waste on modest land, whereas Cluster 2 areas have less waste density despite large farms.

The map below provides a state-level overview of average biopower potential, grouped into three categories: low,
medium, and high potential for bioenergy production. Unlike the cluster map shown in figure 5 that grouped counties
by similarity in agricultural and biopower attributes, this map summarizes average potential by state, offering a
broader, more intuitive view of regional variation.

Average Biopower Potential by State (Binned Categories)

WA

Biopower Category
§ 40 B Low
b= . Medium
S 35 I High
HI NA
30
25
-120 -100 -80
Longitude

Figure 1 Average Biopower Potential by U.S. State (Categorized by Binned Residue Levels)

States with high average biopower potential, typically have both large agricultural residue generation and proximity to
viable bioenergy sites (as identified by EPA’s RE-Powering data). These are key target areas for investment and policy
support. Conversely, states in the low category may still have scattered sites of opportunity, but their average residue
potential is lower, signaling a need for more tailored or small-scale bioenergy initiatives. States with medium potential
offer a balance: they have substantial, though not top-tier, potential for bioenergy development.

This state-level perspective complements the more detailed cluster analysis by showing where bioenergy potential
aggregates at broader scales, helping decision makers prioritize which states might lead the way in national or regional
bioenergy strategies.

3.1. Regression

To estimate the amount of biopower residue (tons) a county could generate, we developed two advanced regression
models; Random Forest and XGBoost, alongside a simple benchmark model that predicts only the average residue
potential for all counties. This approach allows us to see how well our models capture real variation in residue
generation compared to a “no-model” baseline.
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Before modeling, we carefully prepared our data. To ensure numerical stability, we applied log transformations to the
key variables (residue, acres, biorefinery residues) to address heavy skewness. Log transformations help models better
learn patterns in data that spans multiple orders of magnitude (e.g., counties with very low vs. very high residue).

Missing data were addressed through median imputation. For log_Acres, we took the median within each cluster group
(based on clustering in the dataset) to reflect that farm size patterns can vary regionally. For log USDA_Residue and
log_Biorefinery_Residues, we also used median imputation within clusters to preserve local structure in the data.

We then trained our two models using these final predictors:

log USDA_Residue: estimated agricultural residue supply.

log_Acres: average farm size (cropland acres).

log Biorefinery_Residues: residue potential at nearby biorefinery sites (EPA dataset).
cluster: categorical label representing regional agricultural patterns.

These variables capture both local residue supply and structural characteristics of farms and sites, which together shape
actual biopower readiness.

We summarize these model performances in the following table: These numbers show that XGBoost had the lowest
errors and highest explanatory power of all models. It did the best job of predicting actual residue volumes across the

diverse landscape of U.S. counties.

Table 5 Model Performance

Model RMSE (tons) | MAPE (%) | R-squared
Benchmark (Mean) 739,976 579.82 0

Random Forest 463,440 55.52 0.608
XGBoost (Focus Model) | 413,326 45.79 0.688

The lower RMSE and MAPE for XGBoost indicate more accurate predictions of how much biopower residue counties
can generate. The higher R-squared (0.688) shows the model captures nearly 69% of real-world variation, substantially
better than the simpler Random Forest and benchmark values.

XGBoost Variable Importance (Gain)

og_Biorefinary_Fesidues

log_USDA_Residue

Fealure

log_Acres

cluster_num

0.0 0.1 0.2 0.3 0.4 0.5
Importance {Gain)

Figure 2 XGBoost model shows biorefinery residues and USDA residues as the top predictors of biopower potential
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We also examined the model’s variable importance which factors matter most for predicting residue potential. In
XGBoost, the log-transformed Biorefinery residue estimate was the most influential, followed by log USDA residue and
log acres. Biorefinery residues are directly linked to the potential biopower that can be generated, they’re an important
raw input for biopower production. Displayed in the Feature Importance Plot which visually ranks how much each input
contributes to predictions.

To check for systematic errors, we plotted residuals (differences between actual and predicted residue) against the
predicted values. The residual plot shown below shows that the differences between actual and predicted residue
volumes are randomly spread out around zero. This means the model’s predictions generally don’t systematically
overestimate or underestimate residue for different counties. In simpler terms, the model doesn’t make the same kind
of error over and over, it makes some small errors above and some below zero, which is expected in a good model fit.

Residual Plot (Predicted vs Residuals)
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Figure 3 Residuals are centred around zero, indicating good model fit with no strong bias across predicted values

Finally, to visualize the overall model performance, we included a Predicted vs. Actual Scatter Plot below. This plot
indicates that for most counties, the predicted residue closely matches the true value, especially in XGBoost.

Predicted vs. Actual Biopower Residue (XGBoost)
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Figure 4 Predicted values align closely with actual residue amounts, indicating strong model accuracy
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3.2. Classification

First we carry out a classification aimed to identify which counties have high biopower potential (as measured by the
EPA’s estimated residue within 50 miles). To create the binary target variable, we calculated the median of the
Avg_Biopower_Potential across all counties. Counties with an average potential above this median were labeled as high
biopower potential (1), while those below were labeled as low biopower potential (0). This median-based binning
provides a balanced dataset and reduces potential biases compared to using arbitrary thresholds.

We trained a Random Forest classifier using three log-transformed features:

e log USDA_Residue (estimated agricultural waste supply)
e log Acres (average farm size)
e log Biorefinery_Residues (estimated nearby residues available to biorefineries)

The classifier achieved a balanced accuracy of ~83% and a Cohen'’s Kappa of ~0.659, indicating substantial agreement
beyond chance. The confusion matrix showed that the model correctly identified about 77% of “high potential” counties
(sensitivity) while also maintaining a high specificity of ~88%, meaning it rarely misclassified “low potential” counties
as “high.” The most influential predictors were log USDA_Residue and log_Biorefinery Residues, highlighting that
counties with greater residue resources are significantly more likely to be identified as high biopower candidates.

Confusion Matrix Heatmap

Frag

Achual

Pradicted

Figure 5 Confusion matrix showing misclassification between high and low biopower potential counties

A second classification task was predicting behavioral cluster membership, to assign each county to one of the three
behavioral clusters identified through unsupervised clustering:

e High Residue - Moderate Acreage
e Lower Residue - Large Acreage
e Moderate Residue - Small Acreage

We used the same log-transformed features as inputs. This multiclass classification provides insights into regional
behavioral and infrastructural patterns, which are important for understanding variation in agricultural waste potential
across counties in this study. The overall accuracy for this multiclass classification was ~57.3%. The model performed
best at classifying the large “Moderate Residue - Small Acreage” cluster, reflecting its more distinct characteristics in
the data. However, performance was weaker for distinguishing between the other two clusters, suggesting that
incorporating additional relevant data in future studies might help improve accuracy.”

3.3. Comparison to Benchmark methods

To validate the credibility and practical value of our modeling approach, we compare our results with three peer-
reviewed studies from the recent literature that apply machine learning or geospatial methods to biomass or residue
prediction. These comparisons highlight where our work contributes improvements in terms of model generalizability,
data efficiency, and suitability for national-scale planning.
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(Shoaib Ahmad Anees, 2014) estimated aboveground forest biomass in temperate regions of the Himalayas by
integrating Landsat-9 imagery and terrain data with Random Forest and XGBoost models. Their regression models
achieved high predictive performance, with R? values of approximately 0.81. However, the study focused narrowly on
one forest biome and relied on site-specific ground-truth sampling. In contrast, our XGBoost regression model achieved
an R? of approximately 0.69 for predicting agricultural residue and biopower potential across U.S. counties using
publicly available USDA and EPA datasets. Although slightly lower in predictive strength, our model offers greater
generalizability, avoids the need for field sampling, and supports scalable residue planning across multiple crops and
regions.

Similarly, (Nan Lin, 2024) applied UAV and Sentinel-2 data to estimate maize stubble cover using adaptive threshold
segmentation and CatBoost regression. Their model achieved an R? of approximately 0.83 in a localized maize-growing
area. While highly accurate, this method is limited to a narrow geographic and crop-specific scope. By contrast, our
study applied Xgboost to structured tabular data, predicting residue generation across ten major crops nationally. This
allows broader application in policy and planning despite slightly lower model precision, making our approach more
suited to public-sector decision-making.

(Abhishek Chakraborty, 2022) developed a hybrid GIS-based system to estimate biomass potential from crop residues
across India. Their approach combined crop production statistics, satellite land-cover classification, and ground-based
surveys to produce high-resolution maps at the 1-km level. Their work supports a national geoportal used to identify
sites for biomass energy projects. However, their method relies on fixed residue-to-grain ratios and static land-use
assumptions, which may not reflect localized variation or behavioral patterns. Our study advances this by modeling
residue generation dynamically through log-transformed variables and behavioral clusters. This allowed us to explain
approximately 69 percent of the variance in biopower potential and achieve an 83 percent balanced accuracy in
classifying counties with high or low residue supply, using a Random Forest model.

Together, these comparisons show how our modeling approach aligns with and extends existing methodologies by
offering a nationally scalable, behaviorally informed framework for agricultural residue forecasting. Our use of recent
USDA and EPA datasets, combined with unsupervised clustering and supervised machine learning models, allows for
regionally detailed predictions of residue generation and biopower potential, supports more dynamic and transferable
applications for bioenergy and conservation planning.

4. Discussion

Corn is the dominant contributor to agricultural residues in our analysis. This aligns with USDA findings that corn
produces far more crop residue than other major cereals; about 1.7 times as much, thanks to its prolific yields and
concentrated Midwest production area (Andrews, 2006). The cluster analysis in figure 5 below visualizes this by
grouping Corn Belt states into a distinct high-residue cluster, reflecting corn’s outsized role. In practical terms, this
means that managing U.S. agricultural waste effectively will hinge on strategies for corn stover.
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Figure 6 Cluster map
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In the XGBoost regression model, the most influential predictor was the logarithm of biorefinery residues
(log_Biorefinery_Residues). This suggests that areas with greater existing biorefinery residue production also tend to
have higher predicted agricultural waste, implying a strong spatial coupling between biomass supply and bioenergy
infrastructure. The accompanying variable-importance plot above confirms log_Biorefinery_Residues’ dominance over
other features.

The bar chart below of the top 10 crops by biopower potential underscores these findings: the corn bar towers above
all others, indicating that it alone provides most of the potential residue-based energy. Together, these results mean
that both crop choice and regional infrastructure are key determinants of waste patterns, with corn residues at the
center of U.S. waste-generation trends.

Top 10 Crops by Biopower Potential
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Figure 7 Top 10 crops based on its biopower potential

The findings have important implications for renewable energy and environmental management. The large volume of
corn residue suggests a significant biomass resource: one assessment estimated that over 150 million metric tons of
U.S. crop residues could be harvested sustainably. (D.]. Muth Jr., 2012). Using those residues in place of fossil fuels can
yield substantial greenhouse-gas reductions, for example, corn-stover ethanol can cut fuel-cycle CO, emissions by about
79% in an E85 blend (Andrews, 2006). However, these benefits depend on sustainable practices: retaining enough
stover in the field to protect soil is crucial. In fact, USDA guidelines caution that only a fraction of residue should be
removed to maintain soil organic matter and long-term fertility. Thus, a key implication is that bioenergy policies and
farming practices must balance utilization with conservation, leveraging corn’s ample residue while safeguarding soil
health.

From a scientific perspective, our results demonstrate the value of combining large-scale data with machine learning.
The model’s ability to identify meaningful patterns, such as coherent regional clusters and key predictors like
biorefinery presence, shows that ML can complement traditional agronomic studies by revealing hidden structure in
complex data. For instance, clustering revealed geographic groupings of residue production, and feature-importance
analysis highlighted factors (like existing biorefineries) that might be overlooked in simpler analyses. This approach
can guide further research, such as targeting field trials or refining residue-removal guidelines based on the most
influential factors. More broadly, a predictive framework of this kind can be integrated with geographic information
systems and future data (e.g. satellite imagery or climate projections) to create a dynamic tool for resource assessment
and planning.

Limitations

Despite these insights, the study has important limitations. Our analysis is essentially static, built on a snapshot of
regional and crop data, so it cannot capture interannual variability in weather, yields, or economic conditions. Factors
like climate can cause large annual swings in residue availability (Andrews, 2006) because our model uses data from
only one year, it does not capture these year-to-year variations or the impact of future climate trends. We also do not
explicitly model the environmental feedback of residue removal on soil carbon or nutrients; omitting these dynamics
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may lead to overestimation of sustainable supply (Andrews, 2006). Moreover, the model is calibrated to U.S. conditions
and may not generalize to other regions. This agrees with global assessments noting that residue resources and
sustainable harvesting limits are highly site-specific (ieabioenergy.com, 2017). Finally, while XGBoost identifies strong
correlations, it does not establish causation. Important variables such as detailed farm management practices (e.g.
tillage or cover-cropping) are only indirectly captured, so unobserved factors could influence results. In summary, these
constraints mean our predictions should be interpreted with caution and ideally validated against local measurements.

4.1. Future Directions

A key next step is to train the model on multi-year datasets that include both crop yields and climate variables. Including
long-term temperature, precipitation, and other weather records can help the model learn how year-to-year
environmental changes affect residue supply. For example, recent crop-yield studies have leveraged decades of climate
data to capture these effects; one potato yield model used multi-decade meteorological records (1971-2021) to account
for climate impacts on production (Dania Tamayo-Vera, 2024). Similarly, integrating several years of satellite imagery
and seasonal weather data has been shown to significantly improve prediction accuracy in crop forecasting tasks
(Muhamad Ashfaq, 2025). By expanding our training data to cover many growing seasons, the model could detect trends
and anomalies over time and better adjust to unusual weather or production swings.

In parallel, the predictive model should be expanded to explicitly handle temporal sequences. Instead of treating each
year’s data independently, future work could employ time-series machine learning methods (such as recurrent neural
networks or long short-term memory networks) that learn from sequential annual data. Time-series models can exploit
patterns across years; for instance, an LSTM model trained on multiple years of climate and soil data explained over
70% of the variability in maize yield and clearly outperformed static models (Qinqing Liu, 2022). Applying a similar
approach to residue prediction could allow the model to recognize how past seasons’ conditions influence current
residue availability. Incorporating year-on-year dependencies in this way will make predictions more robust to
interannual variability in weather and crop growth.

Overall, improving the model’s predictive power will hinge on using richer data and more advanced modeling to handle
variability. Broadening the dataset to include diverse climatic regions and extreme events will help the model generalize
better under changing conditions. Future efforts might also explore ensemble or deep learning architectures that can
capture complex nonlinear relationships among climate, crop yields, and residue output. By combining multi-year
environmental data with time-series modeling techniques, we expect to achieve more accurate and stable forecasts of
agricultural waste generation even when crop production and weather vary greatly from year to year. (Dania Tamayo-
Vera, 2024).

4.1.1. Real-World Applications

The ML predictions can directly inform on-farm residue management and regional energy planning. For example,
farmers can use the predicted residue yields to decide how much to remove for bioenergy, balancing residue removal
with soil conservation needs. In practice, a farmer could use the output to decide where to bale stover or leave it
undisturbed. Likewise, planners and bioenergy developers can use the spatial results to target investment in areas with
abundant biomass and low ecological risk. For example, our maps of residue potential highlight counties in the Corn
Belt with high residue yields, which can help identify promising sites for cellulosic ethanol plants or pellet mills. By
pinpointing where sustainable collection is feasible, the model helps prioritize fields or regions for residue harvestin a
way that is consistent with conservation guidelines (USDA, usda.gov, 2021).

Using crop residues for energy brings clear benefits but also important trade-offs. On the positive side, agricultural
residues are an inexpensive renewable resource. When processed into fuels or electricity, they can displace fossil energy
and cut greenhouse-gas emissions. In fact, studies (and USDA analyses) show that ethanol made from corn stover has a
much higher net energy balance and far lower carbon emissions than ethanol made from corn grain or gasoline
(Andrews, 2006). In other words, converting stalks to biofuel can significantly reduce the carbon footprint of fuel use.
However, residues perform many critical roles in soil health. Leaving plant cover on the field protects soil from wind
and water erosion and helps maintain moisture and fertility. USDA/NRCS guidance emphasizes that soils kept under
year-round residue or cover crops are “much less susceptible” to erosion (USDA, usda.gov, 2022). In no-till systems, for
example, NRCS practice standards call for maintaining roughly 30-60% crop-cover on the soil surface throughout the
year (usda.gov, 2006). These figures reflect the goal of keeping enough stubble on the ground to buffer raindrops and
wind. If too much residue is removed, erosion risk rises, and organic matter can decline. Research bears this out: long-
term trials show that intensive corn stover removal (even with occasional cover crops) reduces soil infiltration and
organic carbon and “significantly increased water erosion risk” over time (Sindelar Michael, 2019). In short, while the

1796



International Journal of Science and Research Archive, 2025, 16(01), 1783-1799

bioenergy potential of residues is real, it comes with the environmental caveat that nutrients and protective cover may
be lost if removal is excessive.

The key message is balance. The model’s outputs should be used to balance bioenergy gains with soil conservation.
NRCS conservationists explicitly warn that removing crop residues (for grazing or baling) must not be done without
evaluating impacts on soil and water (USDA, usda.gov, 2021). For highly erodible fields, they recommend leaving ample
stubble or planting cover crops to “trap valuable nutrients and prevent erosion” (Shelton, 2023). In practice, farmers
can use our results together with tools like the Revised Universal Soil Loss Equation (RUSLE2) to estimate safe removal
rates for each field. The model helps do exactly that by highlighting which locations can spare residues. In fact, corn
dominates U.S. residue production (USDA estimates all U.S. crops generate over 500 million tons of residue per year,
and corn stover alone is about 1.7 times the residue of the next major grain) (Andrews, 2006). Thus, much of the
harvestable waste is in the Corn Belt. Our maps show where in that region the soil and crop conditions make residue
harvest sustainable. For example, flat, high-yield cornfields on low-slope soils may safely yield stover, whereas hillier
fields would be better left untouched.

5. Conclusion

This study combined current data and machine learning to deliver a detailed picture of U.S. agricultural waste patterns
and their energy potential. We identified distinct clusters of high, medium, and low residue production driven largely
by crop type and location. The Midwestern Corn Belt emerges as the highest-residue region, reflecting corn’s dominant
role in producing harvest residues. In our analysis, we used a residue ratio of 1.5 for corn, which is in line with published
estimates ranging from 1.5 to 1.7 times the residue of other major grains (nrcs.usda.gov). Our XGBoost model accurately
predicted residue amounts and biopower potential, validating that available residue data, farm size (acreage), and
residue processing patterns are key drivers of spatial variation in biopower potential.

Compared to existing works, our study offers broader predictive capacity with strong empirical accuracy. While Lin et
al. (2024) and Anees et al. (2024) achieved high R? scores (~0.83 and ~0.81 respectively) in crop-specific or forest-
based residue estimation using remote sensing and ensemble models, our approach reached R? ~ 0.69 using tabular
county-level data across a national scale. Unlike these studies, which focused on narrow geographic or crop-specific
contexts, our model generalizes across multiple residues types and integrates USDA and EPA datasets to inform large-
scale planning. Additionally, our classification model achieved ~83% balanced accuracy in predicting high versus low
biopower potential counties, comparable to and in some cases exceeding the performance of prior models limited to
specific domains. The use of unsupervised clustering to group behavioral residue patterns further extends the analysis
beyond yield estimation into actionable segmentation. These results indicate the practical importance of residue
prediction and classification. By forecasting where residues are concentrated, farmers and bioenergy developers can
target sustainable biomass harvests. At the same time, this study underscores that not all agricultural residues can be
removed for energy purposes. According to USDA/NRCS conservation standards, such as Practice 329 for no-till residue
management, some residue must remain on fields to protect soil health by reducing erosion and maintaining soil organic
matter (usda.gov, 2006). Our results highlight where there is high residue potential, but they do not prescribe fixed
removal rates. Instead, they provide a foundation for site-specific planning, an approach supported by USDA/NRCS,
which recommends that residue management be tailored to local conditions rather than relying on generalized or
blanket removal assumptions. In practice, this means using decision-support tools and local field assessments to
determine how much residue can be sustainably harvested for bioenergy while safeguarding long-term soil and water
conservation.

For policy and planning, the study suggests reinforcing such site-specific assessment tools. Federal and state bioenergy
initiatives should encourage use of localized models and monitoring. For example, NRCS guidance advises periodic field
monitoring of erosion and soil carbon (Andrews, 2006) so that residue removal can be adjusted if soil health indicators
decline. Aligning bioenergy support with USDA/NRCS conservation practice standards (such as promoting cover crops
or no-till where residues are removed) will help achieve renewable energy goals while safeguarding soils.

Future work can build on this foundation by incorporating climate variability and long-term trends. Adding climate
projections or yearly weather data could refine how residue availability changes under drought or wet cycles. Ongoing
collection of yield and biomass data would allow continuous model re-training, improving accuracy over time.
Extending the analysis to include animal manures and byproducts (e.g. manure-based biogas) would give a more
complete waste-energy picture. By iterating and improving these models and aligning them with conservation policies,
we can continually support farmers and planners in balancing bioenergy use with environmental stewardship, turning
data into decisions that promote both energy security and soil sustainability (Andrews, 2006) (Epa.gov, n.d.).
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