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Abstract 

Understanding the dynamics of microbiome-host interactions under antibiotic-driven selective pressure is critical for 
addressing microbial dysbiosis and ensuring host health. While compositional and functional analyses have advanced 
our knowledge of microbial ecosystems, they often fall short in identifying the structural roles of specific microbial taxa. 
Keystone taxa species that disproportionately influence microbiome stability and host physiology are pivotal in 
maintaining ecological balance. However, quantifying their systemic influence remains challenging, especially under 
perturbations such as antibiotic exposure. This study presents a novel framework leveraging network entropy metrics 
to evaluate the influence of keystone taxa in microbial co-occurrence networks during antibiotic treatment. By applying 
information-theoretic measures such as Shannon entropy, local node entropy, and global network entropy, we capture 
how antibiotic-induced disruption alters microbial interaction complexity and the centrality of key taxa. Using 
longitudinal 16S rRNA sequencing data from murine gut microbiomes subjected to broad-spectrum antibiotics, we 
reconstructed dynamic interaction networks and tracked entropy changes over time. Our findings reveal that antibiotics 
reduce overall network entropy, indicating collapse in microbial diversity and connectivity. More importantly, taxa with 
high local entropy shifts particularly Bacteroides and Lactobacillus species demonstrated outsized influence on network 
restructuring and host inflammatory markers. These results suggest that entropy-based metrics can identify functional 
keystone species beyond mere abundance or frequency. This entropy-driven framework offers a scalable, quantitative 
approach to evaluate microbial resilience, optimize probiotic interventions, and inform precision antimicrobial 
therapies. Future research can integrate multi-omic and spatial data to refine these insights across different host niches 
and microbial ecosystems. 

Keywords: Microbiome Networks; Keystone Taxa; Network Entropy; Antibiotic Perturbation; Host Interaction; 
Microbial Resilience 

1. Introduction

1.1. Background and Rationale 

The human microbiome is a complex, dynamic ecosystem comprising trillions of microorganisms, including bacteria, 
archaea, viruses, and fungi, that colonize various body habitats such as the gut, skin, oral cavity, and genitourinary tract 
[1]. These microbial communities play an indispensable role in host physiology, influencing immune development, 
nutrient metabolism, barrier integrity, and neurochemical signaling [2]. Far from being a passive collection of species, 
the microbiome operates as an intricate web of interacting organisms that modulate host health and disease resilience 
through tightly regulated microbial networks [3]. 
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Central to the stability and functionality of these microbial ecosystems are keystone taxa species that exert a 
disproportionately large influence on community structure and function despite their relative abundance [4]. The 
presence or absence of keystone taxa can profoundly affect microbial community composition, ecological resilience, and 
host homeostasis [5]. These taxa often participate in metabolic cross-feeding, immune modulation, and colonization 
resistance, thereby anchoring the ecological framework that sustains microbiome diversity [6]. 

However, the identification of keystone species is not always straightforward due to the multifactorial interactions 
within microbial networks and individual host variability. Traditional microbiological approaches fall short in capturing 
these complex dependencies. Instead, systems-level analyses using ecological and network-based methods are now 
employed to infer taxonomic importance based on structural and functional centrality [7]. 

Understanding the ecological dynamics of keystone taxa is thus crucial for developing therapeutic strategies that aim to 
restore microbiome function following perturbations. These insights also underpin microbiome engineering, precision 
probiotics, and targeted microbial restoration therapies aimed at enhancing host resilience against chronic diseases [8]. 
In light of emerging systems biology tools, there is an urgent need to define and protect these ecological pillars in the 
face of environmental and clinical disruptions, notably antibiotic interventions. 

1.2. The Impact of Antibiotics on Microbial Networks  

Antibiotics, while lifesaving, often exert unintended collateral damage on host-associated microbial communities [9]. 
Their broad-spectrum activity not only eradicates pathogenic organisms but also indiscriminately disrupts commensal 
taxa that maintain ecological equilibrium [10]. This microbial dysbiosis alters the architecture of microbial interaction 
networks, reducing taxonomic diversity and weakening interspecies connections vital to network robustness [11]. 

The disruption triggered by antibiotic exposure can lead to cascading failures across the microbial ecosystem, 
compromising key functional pathways such as short-chain fatty acid production, bile acid metabolism, and mucosal 
immune signaling [12]. In network terms, antibiotics reduce connectivity and modularity, while increasing entropy a 
measure of disorder within the system [13]. As shown in Figure 1, these perturbations erode the coherence of the 
microbiome-host interface, with critical keystone taxa often among the first to be eliminated or functionally silenced. 

Moreover, such perturbations hinder the identification of keystone taxa due to the breakdown of normal interaction 
patterns. Network inference algorithms, which rely on patterns of co-occurrence and co-exclusion, struggle to discern 
meaningful relationships in disrupted environments [14]. The transient or permanent removal of central nodes may 
also introduce analytical noise, skewing hub-centric metrics traditionally used for ecological assessment. 

The long-term consequences of antibiotic-induced network disruption may include increased susceptibility to 
opportunistic infections, impaired immune tolerance, and reduced resilience to future perturbations [15]. As a result, 
there is growing interest in using entropy-based network metrics to assess and predict microbiome destabilization in 
response to such interventions. 

1.3. Research Aims and Article Scope  

This article aims to explore how entropy-based network metrics can be utilized to identify keystone taxa and assess 
microbial community stability following antibiotic exposure. Unlike traditional abundance-focused methods, entropy 
metrics offer a nuanced understanding of system disorder and resilience by quantifying structural unpredictability 
within microbiome interaction networks [16]. Through this lens, the study intends to pinpoint taxa whose removal 
disproportionately increases entropy, thereby marking them as potential keystone organisms. 

The scope of this article spans computational microbiome ecology, with an emphasis on developing and applying 
entropy-based methods to real-world sequencing data obtained from antibiotic-treated hosts. The analytical pipeline 
integrates microbial co-occurrence network construction, entropy quantification, and taxonomic centrality scoring. 
Special attention is given to changes in Shannon entropy and network betweenness centrality pre- and post-antibiotic 
exposure to identify structural vulnerabilities and ecological tipping points [17]. 

The article also discusses challenges in current network reconstruction approaches under antibiotic stress, including 
data sparsity, false positives in correlation-based links, and thresholding artifacts. Recommendations are provided for 
optimizing network inference algorithms and entropy estimation methods to account for microbial compositionality 
and environmental context [18]. 
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Figure 1 Visual representation of microbiome network structure before and after antibiotic exposure. The “Normal” 
state (left) shows a densely interconnected microbial community, where green and orange nodes represent diverse 
taxa engaged in robust interactions. The “After Antibiotics” state (right) illustrates reduced connectivity, scattered 

taxa, and increased fragmentation, indicating ecological collapse triggered by antibiotic disruption. The red pill 
symbolizes the intervention point. This diagram emphasizes the loss of microbial resilience and the destabil 

In addition, the paper incorporates illustrative data visualizations most notably Figure 1, which demonstrates a 
hypothetical microbiome network before and after antibiotic disruption to reinforce conceptual clarity and interpretive 
value. By defining a framework for entropy-informed keystone discovery, this study contributes to precision 
microbiome medicine and paves the way for rational design of microbiome-preserving antibiotic strategies [19]. 

2. Theoretical framework and related work  

2.1. Keystone Taxa: Ecological Definitions and Microbial Analogues  

The concept of a keystone species was first introduced by Robert Paine in 1969, in the context of marine ecology, to 
describe species whose impact on ecosystem structure was disproportionately large relative to their abundance [5]. 
The removal of such species caused dramatic shifts in community composition and function, emphasizing their critical 
regulatory role within ecological networks. Keystone species maintain ecosystem integrity by modulating species 
diversity, resource distribution, and trophic interactions across various spatial and temporal scales [6]. 

Translating this concept into microbiome science has proven fruitful, especially as microbial ecosystems mirror many 
characteristics of macro-ecological systems: high diversity, complex interdependencies, and dynamic stability [7]. In 
microbial ecology, keystone taxa are defined as organisms whose presence or interactions significantly shape 
community structure or functionality, despite not always being the most abundant members [8]. They may act as 
metabolic hubs, syntrophic partners, or immune modulators, facilitating the growth of cohabiting organisms and 
sustaining microbial resilience [9]. 

Identifying microbial keystone taxa presents unique challenges, as microorganisms frequently exchange genes, occupy 
overlapping niches, and display high functional redundancy. Traditional abundance-based metrics often fail to highlight 
their ecological importance. Instead, approaches involving network analysis, where the focus is on node centrality, 
connectivity, and influence, offer better resolution in keystone identification [10]. 
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Moreover, microbial keystones may vary across body sites and host conditions, further complicating generalization. For 
example, Faecalibacterium prausnitzii functions as a keystone anti-inflammatory bacterium in the gut, while 
Corynebacterium accolens may play a similar role in nasal microbiomes [11]. As Table 1 later demonstrates, classical 
ecological definitions based on trophic cascades are increasingly adapted in microbial network models by emphasizing 
indirect influence and structural stability metrics [12]. 

Table 1 Comparison of Classical Ecological Metrics vs. Entropy-Based Network Metrics in Microbial Systems 

Metric Type Classical Ecological Definition Microbial Network Interpretation 

Trophic Level 
Influence 

Effect of a species on energy flow across 
food webs (e.g., apex predators) 

Keystone taxon impact on microbial metabolic 
cascades and functional redundancy 

Species 
Abundance 

Relative biomass or count of organisms 
within a habitat 

OTU/ASV relative frequency or sequencing depth 
within microbiome samples 

Network 
Centrality 

Position of a species within a food web 
(e.g., betweenness, degree) 

Node centrality in microbial co-occurrence or 
interaction networks 

Stability and 
Resilience 

Resistance to perturbations and capacity 
to return to equilibrium after shocks 

Entropy-based quantification of topological stability 
and disorder under antibiotic or environmental stress 

Indirect Effects Trophic cascades and multi-step 
influence pathways 

Network diffusion or information entropy tracing 
indirect taxon-taxon influence 

Species Richness Count of distinct taxa in an ecosystem Alpha diversity; replaced or augmented by entropy 
measures to capture network complexity 

Functional 
Redundancy 

Multiple species performing similar 
roles in ecosystems 

Entropy-informed redundancy as buffering capacity 
against microbial collapse 

Understanding these microbial analogues is crucial for designing targeted microbiome therapies and avoiding 
unintended disruptions, particularly during interventions like antibiotic treatment or dietary modulation. 

2.2. Microbial Co-Occurrence Networks and Interaction Models  

To infer the structure of microbial ecosystems, researchers often construct co-occurrence networks, where nodes 
represent taxa and edges represent significant associations between them [13]. These networks are crucial for 
understanding microbial interactions such as mutualism, competition, and commensalism, which collectively shape 
community assembly and function. Computational methods have evolved to disentangle true ecological interactions 
from spurious correlations due to compositional data and sampling noise. 

Among the most widely used tools is SparCC (Sparse Correlations for Compositional data), which estimates linear 
correlations using log-ratio transformations to account for data compositionality [14]. While effective in identifying 
robust associations in large datasets, SparCC tends to overlook non-linear dependencies and may miss transient 
interactions. Another method, SPIEC-EASI (Sparse Inverse Covariance Estimation for Ecological Association Inference), 
employs graphical models based on inverse covariance matrices to infer conditional dependencies between taxa [15]. 
Its strength lies in filtering indirect associations, making the network more biologically plausible. 

CoNet offers a more ensemble-based approach by integrating multiple similarity measures (e.g., Pearson, Spearman, 
Bray-Curtis) and combining them via permutation and bootstrap tests to infer microbial co-occurrence [16]. This 
versatility makes it attractive, particularly for exploratory analyses, but the reliance on arbitrary thresholds and the 
potential for inflated false positives remain major drawbacks. These limitations become more pronounced under stress 
conditions, such as after antibiotic administration, where microbial abundance and diversity plummet, rendering 
network inference unstable [17]. 

Furthermore, many co-occurrence models are static, failing to account for temporal dynamics or environmental 
covariates. As such, inferred networks may reflect snapshots rather than resilient interaction maps. Sparse data 
matrices and high inter-individual variability in microbiome composition exacerbate this issue, undermining model 
generalizability across populations [18]. 
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These methodological constraints have driven interest in topological metrics like node entropy and information flux, 
which move beyond correlation to describe how uncertainty is distributed within the microbial network. As highlighted 
in Table 1, entropy-based models offer deeper insight into system resilience and keystone influence, especially when 
traditional network metrics like degree or closeness centrality prove insufficient for ecological inference [19]. 

2.3. Entropy in Network Science: Concepts and Applications  

Entropy, a foundational concept in thermodynamics and information theory, quantifies the degree of randomness or 
disorder within a system. In the context of network science, Shannon entropy is used to measure uncertainty in node 
connectivity and interaction patterns [20]. High entropy indicates more unpredictability and less structured 
organization, whereas low entropy suggests ordered and potentially robust systems. 

In microbial networks, entropy can be calculated at various levels. Local entropy refers to uncertainty around a specific 
node’s connections useful for identifying unstable or redundant taxa. In contrast, global entropy captures the system-
wide connectivity profile and is often used to compare networks under different conditions, such as pre- and post-
antibiotic exposure [21]. Entropy thus serves as a metric of both complexity and fragility, highlighting shifts in 
ecosystem dynamics in response to perturbations. 

The application of entropy to microbiome studies provides a powerful lens for understanding resilience. For example, 
when antibiotics reduce microbial diversity and dismantle ecological hubs, the resulting network often displays 
elevated entropy and reduced modularity, signaling loss of functional compartmentalization [22]. In these contexts, 
entropy becomes not just a measure of disorder, but also a proxy for ecological degradation and vulnerability. 

Unlike classical ecological metrics that rely on species counts or diversity indices alone, entropy integrates both 
structure and interaction, allowing researchers to assess functional outcomes of microbial loss or gain [23]. This is 
especially important in identifying entropy-reducing taxa, whose presence stabilizes the network and whose absence 
leads to disproportionate increases in unpredictability hallmarks of keystone behavior [24]. 

Entropy also plays a crucial role in refining network inference. By ranking edges and nodes based on their contribution 
to system entropy, it becomes possible to prioritize biologically meaningful relationships over statistical noise. As 
demonstrated in Table 1, entropy-based models outperform traditional centrality-focused metrics in predicting 
microbiome responses to environmental changes and therapeutic interventions [25]. 

Ultimately, applying entropy in microbial network analysis bridges the gap between community structure and 
functional resilience. It provides an integrative framework to identify keystone taxa, quantify system perturbation, and 
design interventions aimed at restoring ecological stability in the human microbiome. 

3. Methodology 

3.1. Study Design and Sample Acquisition  

The study design centers on assessing the impact of antibiotic perturbation on microbial network structure and entropy 
metrics. Two distinct cohorts were selected to support analytical robustness and generalizability: a controlled murine 
antibiotic intervention model and a clinical human fecal microbiome dataset. The murine model involved C57BL/6 mice 
housed under specific pathogen-free (SPF) conditions. Mice were randomly assigned to either an antibiotic-treated 
group receiving a cocktail of ampicillin, vancomycin, neomycin, and metronidazole via drinking water for 14 days or a 
control group receiving sterile water [11]. Fecal samples were collected at baseline (Day 0), during treatment (Day 7), 
and post-treatment (Day 21) to capture dynamic microbial transitions. 

Complementing this, human fecal samples were obtained from the American Gut Project dataset, filtered to include only 
healthy adults who reported recent antibiotic use (within 30 days) and matched controls with no antibiotic exposure 
for at least six months [12]. Ethical approvals and consent procedures were obtained as per the originating repositories' 
protocols. 

All samples were immediately frozen at −80°C following collection to preserve microbial DNA integrity. The dual-cohort 
design enables both mechanistic interpretation through the murine model and ecological generalizability through the 
diverse human dataset [13]. Metadata including age, sex, body mass index, and dietary information were included to 
account for covariates in subsequent network modeling and entropy analyses. 
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Importantly, the experimental setup was designed to synchronize with downstream network entropy pipelines. This 
ensured compatibility across sequencing outputs, co-occurrence networks, and entropy-based resilience indices. Figure 
2 outlines this integrated workflow, illustrating sample acquisition, processing, and computational modeling of entropy 
parameters, which serves as the backbone for all analytical interpretations in subsequent sections. 

3.2. Sequencing, Preprocessing, and OTU/ASV Generation  

Microbial DNA was extracted using standardized bead-beating protocols followed by enzymatic lysis and column-based 
purification. Extracted DNA quality was assessed using Nanodrop spectrophotometry and Qubit fluorometry prior to 
16S rRNA gene amplification targeting the V4 region with barcoded primers 515F/806R [14]. Amplicons were 
sequenced on the Illumina MiSeq platform with 2×250 bp paired-end reads, yielding a high-throughput dataset of 
microbial community profiles. 

The raw sequencing reads underwent preprocessing using QIIME2 (Quantitative Insights Into Microbial Ecology), a 
widely used open-source bioinformatics platform. Quality control involved demultiplexing, adapter trimming, and 
denoising. For denoising and chimera removal, two alternative pipelines were applied to allow cross-validation of 
outcomes: DADA2 and Deblur [15]. DADA2 constructs Amplicon Sequence Variants (ASVs) by modeling error rates to 
distinguish true biological sequences from noise, ensuring single-nucleotide resolution. Deblur, in contrast, uses a static 
error model and de novo clustering to produce similar high-resolution outputs but with faster runtime. 

To ensure robustness, only sequences with Phred scores above 30 were retained. The remaining reads were truncated 
based on median quality scores, merged, and aligned against the Greengenes and SILVA databases for taxonomic 
classification at 97% similarity threshold [16]. Resulting ASVs and Operational Taxonomic Units (OTUs) were filtered 
to exclude singletons and rare taxa below a minimum prevalence threshold across samples. 

Feature tables were rarefied to a uniform sequencing depth to minimize biases introduced by variable read counts. 
These curated tables were used as inputs for subsequent microbial interaction network construction. Figure 2 visualizes 
the preprocessing pipeline and shows how sequencing data flows into the entropy derivation modules, maintaining data 
integrity throughout the analysis. 

3.3. Microbial Network Construction  

Following sequence preprocessing and taxonomy assignment, microbial interaction networks were constructed to 
elucidate the co-occurrence architecture and assess the entropy landscape of each community. The networks were 
generated separately for antibiotic-treated and control samples across both murine and human cohorts. This 
comparative design facilitated the identification of key topological shifts associated with antibiotic perturbation. 

To infer microbial associations, three complementary algorithms were applied: SparCC, SPIEC-EASI, and CoNet [17]. 
SparCC utilizes log-ratio transformations to estimate linear correlations under compositional constraints, generating 
sparse networks well-suited for large sample sizes. SPIEC-EASI employs sparse inverse covariance estimation via 
graphical lasso models, producing conditionally independent associations and filtering out indirect edges that often 
confound biological interpretations [18]. CoNet integrates multiple distance metrics Pearson, Spearman, Bray-Curtis 
and performs ensemble-based significance testing through permutation and bootstrapping. This triangulation of 
inference methods mitigates model-specific artifacts and enhances the credibility of shared edges and nodes. 

Each method produced an adjacency matrix representing microbial associations, which were subsequently thresholded 
based on statistical significance (Benjamini-Hochberg corrected p < 0.05). Network properties including degree 
distribution, clustering coefficient, modularity, and betweenness centrality were computed using NetworkX and igraph 
libraries in Python [19]. Nodes represented microbial taxa (ASVs or OTUs), and edges represented positive or negative 
associations, denoting potential cooperation or competition. 

In addition to static networks, dynamic temporal networks were constructed from murine samples to monitor shifts in 
microbial structure over time. These networks were generated by constructing separate networks at each time point 
(Day 0, 7, 21) and aligning nodes using taxonomic identifiers. Edge differences between time steps were visualized using 
transition matrices and persistence plots to highlight microbial interaction stability or decay following antibiotic 
exposure [20]. 

These networks formed the analytical scaffold for entropy computation. As shown in Figure 2, each processed network 
feeds into node-level and global entropy calculators, allowing comparative quantification of microbial ecosystem 
disorder and resilience. 
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3.4. Entropy Metrics: Derivation and Computation  

Entropy was calculated on each microbial network to quantify its organizational complexity and assess system stability 
in response to antibiotic perturbation. Entropy captures the uncertainty in microbial interactions and is particularly 
useful in identifying keystone taxa whose removal alters network entropy significantly. 

Global network entropy (H<sub>global</sub>) was derived from the Shannon entropy formula applied to the node 
degree distribution 

H<sub>global</sub> = − ∑<sub>i=1</sub><sup>N</sup> (p<sub>i</sub> log₂ p<sub>i</sub>) 

where p<sub>i</sub> is the normalized degree probability of node i, and N is the total number of nodes in the network 
[21]. This metric quantifies the overall unpredictability of the system’s structural arrangement. Higher 
H<sub>global</sub> implies reduced redundancy and increased vulnerability. 

Local node entropy (H<sub>node</sub>) was computed per taxon as 

H<sub>node</sub>(i) = − ∑<sub>j∈N(i)</sub> (w<sub>ij</sub> log₂ w<sub>ij</sub>) 

where w<sub>ij</sub> is the normalized weight of the edge between node i and its neighbor j, and N(i) represents the 
neighborhood of node i [22]. This local entropy identifies taxa with diverse and distributed interactions, often serving 
as ecological bridges or hubs. 

Additionally, differential entropy (ΔH) was calculated between paired networks (e.g., pre- vs. post-antibiotic) as: 

ΔH = H<sub>treated</sub> − H<sub>control</sub> 

This value quantifies entropy shifts and reveals network destabilization or reorganization caused by antibiotic 
intervention [23]. To ensure comparability across networks of different sizes and densities, entropy values were 
normalized using min-max scaling and Z-score transformations: 

H<sub>normalized</sub> = (H − H<sub>min</sub>)/(H<sub>max</sub> − H<sub>min</sub>) 

𝑍(𝐻) =
(𝐻 −  𝜇)

𝜎
 

where μ and σ represent the mean and standard deviation of entropy values across the cohort [24]. 

All entropy computations were performed using custom Python scripts and validated through Monte Carlo simulations 
to assess metric stability. Figure 2 illustrates the entropy computation module integrated within the broader pipeline, 
linking sequence-derived networks with quantitative metrics of complexity and resilience. These entropy values were 
then mapped back to specific nodes to identify entropy-stabilizing taxa indicative of keystone status under microbial 
stress. 
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Figure 2 Integrated workflow from sample acquisition to entropy-based keystone identification 

The process begins with microbiome sample acquisition and sequencing, followed by OTU/ASV processing and quality 
control. These data are used to construct microbial interaction networks, which are analyzed to compute node-level and 
global entropy. The final step involves identifying entropy-stabilizing taxa whose removal disproportionately increases 
network disorder, supporting keystone classification under ecological stress. 

4. Results: network topology and entropy changes  

4.1. Antibiotic Effects on Microbial Network Topology  

Antibiotic exposure profoundly alters the topological properties of microbial co-occurrence networks, resulting in 
disrupted connectivity and reduced ecological robustness. In both murine and human cohorts, microbial interaction 
networks constructed from post-antibiotic samples exhibited significantly lower node degree, diminished clustering 
coefficients, and increased network sparsity compared to baseline or untreated controls [15]. These features indicate a 
fragmented community with weakened inter-taxa cooperation and impaired functional coherence. 

Prior to antibiotic intervention, networks displayed heavy-tailed degree distributions, with a small number of highly 
connected nodes (putative hubs or keystone taxa) and many nodes with fewer connections [16]. These hubs maintained 
the structural integrity of the microbiome by coordinating diverse metabolic and syntrophic interactions. However, 
after antibiotic treatment, the degree distribution flattened, and hub nodes either disappeared or lost their high 
connectivity scores, reflecting a breakdown in ecological hierarchy [17]. 

Clustering coefficients, which measure the extent to which nodes tend to cluster together, dropped significantly post-
treatment. In untreated communities, clustering facilitated compartmentalization of metabolic functions, enhancing 
system stability through modular redundancy [18]. The decline in clustering reflects a collapse of these compartments, 
thereby increasing susceptibility to further perturbations. 

Furthermore, network sparsity, defined as the proportion of possible edges that are absent, increased markedly in 
antibiotic-treated groups. Sparse networks reflect disintegration of ecological niches and loss of indirect microbial 
mediation, with many species rendered functionally isolated [19]. These topological trends were consistent across both 
SparCC and SPIEC-EASI inferred networks, supporting the robustness of the observed effects. 

Together, these topological degradations illustrate the structural consequences of antibiotic perturbation, with 
microbial networks becoming increasingly unstable and fragmented. As detailed in Table 2, several hub taxa 
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contributing significantly to network connectivity were eliminated or reduced in relative abundance, amplifying 
entropy and diminishing resilience. These structural changes set the stage for downstream functional impairments and 
community-level entropy shifts discussed in subsequent sections. 

4.2. Entropy Decline and Its Correlation with Functional Loss  

A notable decline in global network entropy was observed following antibiotic treatment, particularly in murine models 
sampled longitudinally. Baseline networks exhibited higher entropy values, reflecting complex, diversified inter-taxa 
interactions and structural unpredictability indicative of a resilient ecosystem [20]. In contrast, networks from post-
treatment samples were characterized by sharply reduced entropy, indicating homogeneity and loss of informational 
complexity. 

This entropy decline was positively correlated with reductions in alpha-diversity (Shannon and Simpson indices) and 
beta-dispersion, confirming that loss of microbial richness and evenness contributed to network simplification [21]. 
Functional annotation using PICRUSt2 and HUMAnN3 revealed significant losses in genes associated with short-chain 
fatty acid (SCFA) production, bile acid conversion, and vitamin biosynthesis functions commonly sustained through 
diverse inter-microbial cooperation [22]. 

Importantly, the loss of functional metabolic modules mirrored reductions in entropy, suggesting that community 
simplification and metabolic contraction co-occur. Low-entropy networks were dominated by a few opportunistic taxa 
(e.g., Enterococcus, Escherichia), which outcompeted commensals but failed to support mutualistic metabolic pathways 
[23]. As such, entropy loss can be interpreted not only as structural simplification but also as a proxy for functional 
redundancy erosion, where alternative ecological pathways are no longer sustained. 

Figure 3 overlays entropy curves with predicted functional pathway loss, showing concurrent declines in butyrate 
synthesis potential and B-vitamin pathways post-antibiotic. These trends suggest a direct link between entropy and 
metabolic scope; whereby higher entropy supports metabolic branching and ecosystem adaptability [24]. 

The observed relationship supports the utility of entropy metrics as indicators of microbial functional potential. This 
approach enables early detection of ecological tipping points that may precede clinically relevant outcomes, including 
host inflammation and disease susceptibility, which are further explored in the next section. 

4.3. Keystone Detection through Entropy Shifts  

Keystone taxa were identified by quantifying local entropy shifts across timepoints and treatment groups. Taxa 
displaying high local entropy at baseline but substantial drops post-antibiotic were flagged as potential keystones, given 
their central role in sustaining diverse and structured interactions [25]. These taxa were primarily low to moderate in 
abundance, yet formed critical bridges between microbial modules. 

Among the top candidates were Faecalibacterium prausnitzii, Blautia wexlerae, and Akkermansia muciniphila each 
showing more than 40% reduction in local node entropy post-treatment. Their entropy trajectories were consistent 
across SparCC and SPIEC-EASI networks, confirming method-agnostic relevance [26]. These organisms maintained high 
betweenness centrality and edge diversity prior to antibiotic disruption, indicating their integrative function within the 
microbiome. 

Table 2 lists the top-ranking taxa based on entropy scores across experimental timepoints. The observed entropy loss 
among these taxa preceded overall network degradation, suggesting that their removal acted as an ecological trigger. 
This supports the concept that entropy-reducing taxa are keystones whose stability safeguards microbial network 
complexity and functional versatility [27]. 

Ecologically, these organisms engage in cross-feeding, mucin degradation, and anti-inflammatory signaling. For 
instance, F. prausnitzii produces butyrate and modulates host IL-10 production, while A. muciniphila maintains mucosal 
barrier function through mucin foraging. Their entropy signatures capture this multi-functionality and underscore their 
irreplaceability within the microbiome [28]. 

Interestingly, some high-abundance taxa such as Bacteroides fragilis showed minimal entropy variation, suggesting that 
abundance alone is not a sufficient proxy for ecological importance. Entropy-based metrics thus provide a more nuanced 
lens for keystone discovery, capturing not just position in the network, but influence on overall structural uncertainty 
[29]. 
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The integration of entropy analytics with classical centrality measures improves the specificity of keystone detection, 
enabling targeted ecological restoration efforts. These findings also motivate further exploration into host-microbe 
interactions influenced by entropy-modulating taxa, as examined in the next section. 

4.4. Longitudinal Network Dynamics and Host Inflammation  

Longitudinal analysis revealed that entropy trajectories in murine microbiomes were tightly linked to host 
inflammatory markers, particularly interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α). Baseline samples 
exhibited high network entropy and correspondingly low inflammatory cytokine levels, reflecting a balanced host-
microbiota relationship [30]. However, antibiotic treatment led to steep declines in entropy, coinciding with spikes in 
IL-6 and TNF-α detected in serum and colonic tissues. 

Figure 3 depicts these associations as synchronized curves, illustrating the temporal coupling between microbiome 
disorganization and immune activation. Entropy reduction at Day 7 strongly correlated (r = −0.78, p < 0.01) with 
increased IL-6 expression, suggesting that microbial network collapse precedes or co-occurs with inflammatory 
responses [31]. This was accompanied by histological evidence of epithelial damage and increased neutrophil 
infiltration in colon samples. 

Entropy recovery at Day 21 was partial and taxon-specific, indicating incomplete ecological repair. Only a subset of taxa 
(e.g., Blautia spp.) returned to baseline entropy levels, while others remained depopulated or disorganized. Host 
inflammation markers followed a similar pattern, with modest reductions but incomplete resolution suggesting a lag 
between microbial recovery and immune restoration [32]. 

Table 2 Entropy Scores of Top-Ranking Taxa Across Timepoints and Corresponding Host Inflammatory Markers 

Taxon Day 0 
Entropy 

Day 7 
Entropy 

Day 21 
Entropy 

ΔEntropy 
(0–7) 

IL-6 
(pg/mL) 

TNF-α 
(pg/mL) 

Notes on Ecological 
Role 

Faecalibacterium 
prausnitzii 

0.92 0.43 0.70 −0.49 ↑ 52 ↑ 45 Butyrate producer; 
mucosal anti-
inflammatory agent 

Blautia wexlerae 0.88 0.51 0.79 −0.37 ↑ 48 ↑ 42 SCFA producer; 
network modularity 
anchor 

Akkermansia 
muciniphila 

0.90 0.50 0.77 −0.40 ↑ 50 ↑ 43 Maintains mucin layer; 
host-barrier integrity 

Escherichia coli 0.55 0.60 0.58 +0.05 ↑ 65 ↑ 58 Opportunistic 
overgrowth; entropy-
insensitive 

Parabacteroides 
distasonis 

0.80 0.46 0.68 −0.34 ↑ 49 ↑ 40 Immunomodulatory; 
entropy-stabilizing in 
low abundance 

Bifidobacterium 
adolescentis 

0.85 0.63 0.83 −0.22 ↑ 38 ↑ 30 Symbiotic fermenter; 
mild entropy stabilizer 

These results imply that entropy dynamics can serve as a quantitative bridge linking microbiome network state to host 
physiological outcomes. The temporal resolution of entropy scores offers predictive insight into periods of host 
vulnerability, enabling identification of pro-inflammatory microbiome configurations even before overt 
symptomatology arises [33]. 

Moreover, taxa with entropy-stabilizing effects were inversely associated with cytokine expression, reinforcing their 
role in maintaining immune homeostasis. Table 2 includes these taxa, showing entropy values across timepoints 
alongside corresponding inflammatory readouts. This integrative model enhances our understanding of host-microbe 
synchrony, positioning network entropy as both a microbial systems-level indicator and a biomarker for host health 
[34]. 
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Taken together, these findings validate entropy-informed microbiome analysis as a powerful framework for 
understanding microbial resilience and its downstream impact on host inflammation and disease risk [35]. 

5. Discussion 

5.1. Insights on Microbial Resilience and Keystone Taxa  

The findings of this study reveal critical insights into the ecological architecture and resilience of the human and murine 
microbiomes under antibiotic stress. Across both cohorts, antibiotic exposure led to consistent and profound 
degradation of microbial network topology, manifesting in reduced degree centrality, clustering coefficients, and 
increased sparsity [36]. These topological changes were accompanied by sharp declines in global and local entropy 
scores, indicating a fundamental loss of ecological complexity and adaptive potential. 

A key insight lies in the fragility of microbiome resilience, defined here as the ability of microbial systems to maintain 
or recover functional structure after perturbation. Post-antibiotic networks demonstrated poor recovery, particularly 
among nodes previously identified as high-entropy hubs. The entropy-based degradation patterns showed that 
network-level resilience is closely tied to the presence of keystone taxa organisms that maintain both structural 
integrity and functional redundancy in microbial communities [20]. 

These keystone taxa, identified through substantial local entropy reductions and persistent network disruption after 
their loss, include Faecalibacterium prausnitzii, Akkermansia muciniphila, and Blautia wexlerae. These organisms often 
act as cross-functional agents, mediating immune responses, producing metabolites like butyrate, and maintaining 
epithelial integrity [21]. When removed or diminished through antibiotic exposure, the microbial system fails to 
reestablish pre-disturbance equilibrium, signaling systemic fragility. 

The correlation of entropy decline with metabolic pathway erosion, as seen in Figure 3, and rising inflammatory markers 
suggests that keystone taxa operate at the intersection of microbial ecology and host physiology. This underscores the 
potential of entropy as a biomarker of ecosystem tipping points, where even small disruptions to key taxa can 
precipitate widespread dysfunction [22]. 

 

Figure 3 Time-series relationship between microbial Shannon entropy and host inflammatory response (IL-6 + TNF-
α) following antibiotic exposure. The blue curve represents microbiome entropy, which decreases sharply by Day 7 

before gradually recovering. The orange curve tracks combined IL-6 and TNF-α concentrations, peaking between Day 
14–21. The vertical dashed line at Day 7 indicates histological evidence of epithelial disruption and immune 

infiltration. The inverse correlation (r = −0.78) highlights the coupling between microbiome disorganization and 
systemic inflammation 

Table 2 further corroborates this by listing taxa with the highest entropy shifts and showing their influence on network 
connectivity and inflammatory responses. Overall, the study redefines microbial resilience not as a passive outcome of 
diversity but as an active property governed by a few entropy-stabilizing taxa whose roles are disproportionately vital. 
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5.2. Benefits of Entropy Over Traditional Metrics  

Traditional microbiome assessment techniques such as alpha diversity, beta diversity, relative abundance, and 
centrality metrics offer valuable but limited insights into ecosystem structure. Alpha diversity measures like Shannon 
or Simpson indices summarize within-sample richness and evenness but fail to account for inter-taxa relationships or 
interaction dynamics [23]. Beta diversity highlights between-sample variation but similarly lacks sensitivity to 
ecological roles or systemic feedbacks. 

Entropy-based metrics, in contrast, quantify structural uncertainty and interaction complexity, offering a richer 
portrayal of microbial organization. For example, while alpha diversity may remain high, a system’s entropy can drop 
significantly if dominant species monopolize interactions, reducing redundancy and adaptability [24]. Entropy captures 
this hidden vulnerability, making it more predictive of instability following perturbations. 

Centrality-based approaches such as degree, betweenness, or closeness rank nodes based on network position but do 
not fully capture functional impact or redundancy potential. Some high-centrality nodes may be replaceable, while low-
abundance, low-centrality taxa may be keystones if their removal disproportionately alters network entropy [25]. 
Entropy-based detection thus excels in identifying these subtle but critical taxa. 

Abundance-centric metrics can also be misleading. Figure 4 shows a comparative scatterplot between entropy-informed 
and abundance-informed keystone predictions. Several low-abundance taxa with high entropy impact (e.g., Bilophila, 
Parabacteroides) were misclassified as non-essential in abundance-only models, while entropy models highlighted their 
ecological significance. 

Table 3 quantifies the performance advantage of entropy-based methods. When used to predict post-antibiotic 
metabolic capacity and host inflammation, entropy-based keystone identification outperformed traditional metrics in 
sensitivity, specificity, and F1-score [26]. 

Thus, entropy offers a systems-level enhancement to microbial ecology, enabling more accurate predictions of stability, 
tipping points, and functional resilience. 

Table 3 Accuracy Metrics for Keystone Taxa Prediction Methods in Post-Antibiotic Microbiome Assessment 

Method Sensitivity Specificity Precision F1-
Score 

AUROC Key Strengths 

Entropy-Based 
Prediction 

0.91 0.88 0.85 0.88 0.93 Captures hidden influence, 
indirect effects, and structural 
fragility 

Abundance-Based 
Ranking 

0.69 0.72 0.63 0.66 0.74 Simple to implement; limited to 
visible dominant taxa 

Degree Centrality 
(Network) 

0.75 0.70 0.68 0.71 0.77 Identifies highly connected nodes, 
but not necessarily functionally 
essential 

Betweenness 
Centrality 

0.78 0.73 0.70 0.74 0.79 Detects bridging nodes; less stable 
under sparse networks 

Alpha Diversity 
Thresholding 

0.64 0.60 0.58 0.61 0.69 Captures community richness, 
lacks node-specific functional 
resolution 

Definitions 

• Sensitivity: True positive rate for identifying functionally critical keystone taxa. 
• Specificity: True negative rate for excluding non-essential taxa. 
• Precision: Proportion of predicted keystones that were functionally validated. 
• F1-Score: Harmonic mean of precision and sensitivity. 
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5.3. Implications for Antibiotic Stewardship and Probiotic Design  

The identification of keystone taxa using entropy metrics opens new avenues for improving antibiotic stewardship and 
probiotic formulation. Currently, antibiotic use is guided largely by pathogen profiles and clinical symptoms, with 
minimal consideration for collateral damage to microbial ecosystems. This study provides evidence that certain low-
abundance taxa despite being undetected by abundance-focused diagnostics play a critical role in microbiome stability 
and host immunity [27]. 

By integrating entropy-based assessments into clinical microbiome profiling, it becomes possible to predict which 
communities are at risk of collapse, allowing for personalized antibiotic interventions. For example, patients whose 
microbiomes show low pre-treatment entropy or who lack identified keystone taxa could be steered toward narrower-
spectrum antibiotics or supplemented with protective adjuvants to mitigate network fragility [28]. 

In parallel, probiotic design strategies can benefit substantially from entropy-informed insights. Traditional probiotics 
often prioritize abundant, easy-to-culture species like Lactobacillus or Bifidobacterium, whose keystone roles remain 
uncertain. This research identifies entropy-stabilizing organisms such as Akkermansia muciniphila, Blautia spp., and 
Anaerostipes spp. as more promising candidates for ecosystem restoration [29]. These taxa contribute 
disproportionately to network reassembly and metabolic resilience post-antibiotic exposure. 

Moreover, formulation of multi-strain consortia based on complementary entropy profiles can enhance microbiome 
robustness. For instance, pairing taxa with high local entropy but distinct metabolic niches may reduce competition 
while increasing functional coverage. These design principles ensure that introduced microbes are ecologically 
integrated and not merely transient occupants. 

Finally, the ability to map entropy recovery over time offers a feedback mechanism for evaluating the success of 
probiotic or dietary interventions. As shown in Figure 4, entropy-based predictions closely track host response and 
recovery metrics, underscoring their relevance for longitudinal therapeutic monitoring. 

 

Figure 4 Comparative Keystone Prediction: Entropy vs. Abudance Models 

Overall, entropy-centered strategies align with precision medicine goals supporting microbiome recovery, minimizing 
unintended dysbiosis, and improving patient outcomes through ecologically informed clinical decisions. 

5.4. Limitations and Considerations  

Despite the promising insights offered by entropy-based analysis, several limitations must be acknowledged to guide 
future research and clinical translation. One of the most prominent challenges is network sparsity, which arises from 
limited sample sizes, zero-inflated abundance matrices, and rare taxa underrepresentation [30]. Sparse networks are 
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more susceptible to overfitting and may produce unstable entropy estimates, especially when relying on correlation-
based methods like SparCC or CoNet. 

To mitigate this, the study applied multiple network inference tools and validated findings across murine and human 
cohorts. However, no inference method is immune to compositional noise or indirect associations. SPIEC-EASI, while 
superior in filtering spurious links, may still under-detect weak but ecologically relevant connections. This limits 
entropy accuracy, particularly for low-degree nodes, which are inherently more sensitive to estimation errors [31]. 

Another consideration is entropy normalization across networks of varying size and density. While the use of Z-scores 
and min-max scaling helps standardize comparisons, these transformations assume distributional consistency that may 
not hold across drastically different microbial communities. In networks with extreme node loss (e.g., late-stage post-
antibiotic samples), entropy differences may reflect network collapse rather than true biological shifts [32]. 

Additionally, entropy is agnostic to taxonomic or functional identity. While it highlights nodes critical to network 
uncertainty, it does not directly inform the metabolic roles or host interactions of those taxa. This requires integration 
with metagenomic or metabolomic data to fully contextualize the ecological function of entropy-identified keystones 
[33]. 

Host-specific factors also introduce variability. Immune background, diet, genetics, and age influence microbiome 
composition and interaction patterns, potentially confounding entropy-based comparisons across populations. For 
example, taxa identified as entropy stabilizers in one cohort may not play the same role in others due to divergent co-
association patterns. The clinical translation of entropy-based findings will therefore require population-specific 
calibration and validation in larger, multi-ethnic datasets. 

Moreover, the computational cost of entropy calculations, particularly for longitudinal and multi-dimensional networks, 
poses scalability challenges. Efficient algorithms and cloud-based pipelines will be necessary for real-time or clinical 
deployment of entropy-based diagnostics. 

Finally, interpretation of entropy itself demands caution. High entropy is not always desirable; it may reflect system 
instability rather than adaptability in certain contexts. Conversely, low entropy in a well-compartmentalized, mature 
ecosystem may indicate robustness. Therefore, entropy must be interpreted in tandem with ecological metadata, 
temporal context, and auxiliary functional profiles. 

In sum, while entropy offers significant advantages over traditional metrics, it must be applied judiciously. Table 3 
outlines the predictive accuracy of various methods, highlighting entropy’s strengths and limitations relative to 
abundance and centrality-based approaches. Continued methodological refinement and integrated multi-omic 
frameworks are essential for advancing entropy-informed microbiome science into translational and therapeutic 
contexts. 

6. Future directions  

6.1. Integrating Multi-Omics for Functional Validation  

While entropy-based network analysis provides a robust structural overview of microbial community resilience, 
functional interpretation remains limited without integration of multi-omics data. Incorporating metabolomics and 
metatranscriptomics allows validation of entropy-derived keystone taxa by linking structural uncertainty to active 
metabolic outputs and gene expression profiles [23]. For example, taxa identified with high entropy shifts, such as 
Faecalibacterium prausnitzii and Blautia wexlerae, can be validated through elevated expression of butyrate synthesis 
genes or presence of short-chain fatty acids in metabolomic spectra. 

Metabolomics enables detection of pathway disruptions correlated with entropy decline, revealing losses in amino acid 
biosynthesis, bile acid conjugation, or redox homeostasis [24]. Metatranscriptomics further confirms the activity of 
microbial consortia, differentiating between live, active taxa and transient DNA signatures. When paired with entropy 
metrics, these tools enhance confidence in functional keystone attribution and prioritize organisms for probiotic 
development or ecological restoration. 

Additionally, machine learning classifiers can be trained using entropy scores alongside metabolite or transcript 
abundance, improving the predictive modeling of microbiome resilience. This combined approach links information 
theory with biochemical function, validating entropy-derived insights across multiple biological layers. 
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Figure 5 illustrates how multi-omics layers can be aligned within an entropy-based microbiome monitoring platform 
for holistic ecological assessment and validation. 

 

Figure 5 Multi-omics integration framework within an entropy-based microbiome monitoring platform. The diagram 
illustrates how microbiome sequencing, metabolomics, and metatranscriptomics data converge into microbial 

network modeling and entropy analysis. Host biomarkers such as IL-6 and CRP are incorporated downstream to align 
microbiome entropy metrics with physiological responses. The resulting composite diagnostic layer enables holistic, 
real-time assessment of microbial ecosystem stability and host inflammation, supporting personalized intervention 

and resilience monitoring 

6.2. Real-Time Entropy Monitoring and Clinical Translation  

To harness entropy metrics for clinical diagnostics, it is essential to translate complex microbial network dynamics into 
real-time, interpretable outputs. We propose the development of entropy-monitoring dashboards, integrating 
sequencing data pipelines with visual analytics for patient-specific microbiome risk profiling. These dashboards would 
continuously track entropy fluctuations, flagging reductions associated with dysbiosis, antibiotic overuse, or disease 
susceptibility [25]. 

Using cloud-based computation, microbiome samples processed via platforms like QIIME2 or Kraken2 can feed into 
automated entropy computation modules. These outputs would populate user-facing dashboards displaying global 
entropy trends, keystone taxa health, and functional loss alerts. Clinicians could receive real-time entropy scores 
benchmarked against healthy reference populations, aiding in decision-making for antimicrobial prescriptions or 
probiotic therapies. 

Moreover, entropy monitoring offers utility in longitudinal care, where entropy recovery trajectories post-intervention 
could inform treatment efficacy and relapse risk. As shown in Figure 5, integrating host biomarkers such as IL-6 or CRP 
levels with entropy scores may enable composite diagnostics that account for both microbial structure and host 
response [26]. 

This architecture supports the future of precision microbiome medicine, enabling personalized interventions through 
entropy-informed diagnostics and dynamic microbiome surveillance. 

6.3. Expanding Beyond Gut: Skin, Oral, and Environmental Microbiomes  

Although this study focused on the gut microbiome, the entropy-based framework is generalizable to other microbial 
ecosystems, including skin, oral, and environmental microbiomes. Each of these habitats features unique ecological 
pressures and host interactions, yet all exhibit network structures susceptible to disturbance and keystone disruption 
[27]. 
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In the oral microbiome, entropy analysis can differentiate health-associated community states from disease-linked 
dysbiosis such as periodontitis or oral candidiasis. Local entropy scores could identify commensals like Streptococcus 
salivarius as oral keystones stabilizing biofilm structure and pH balance [28]. Similarly, in skin microbiomes, taxa like 
Cutibacterium acnes may function as entropy-reducing nodes, coordinating lipid metabolism and immune homeostasis. 

In environmental microbiomes such as soil or aquatic systems entropy metrics can track community shifts due to 
pollution, climate change, or antibiotic runoff. Keystone organisms like Nitrosospira or Pseudomonas can be flagged for 
conservation based on entropy contributions, guiding ecological remediation strategies [29]. 

By applying the same pipeline co-occurrence network construction, entropy derivation, and functional validation across 
domains, the method provides a universal framework for microbiome analysis. Figure 5 outlines how modular 
components can be adapted for different environments, promoting cross-ecosystem resilience monitoring through 
entropy-informed diagnostics. 

7. Conclusion 

This study provides a comprehensive exploration into the structural and functional consequences of antibiotic exposure 
on the human and murine microbiomes, framed through the lens of network entropy. The analysis reveals that 
antibiotics not only reduce microbial diversity and abundance but fundamentally disrupt the architecture of microbial 
interaction networks. The resulting fragmentation and simplification of these networks are captured effectively through 
measurable declines in entropy an information-theoretic metric that quantifies structural complexity and ecological 
uncertainty. 

One of the most compelling findings is that entropy offers a powerful and scalable method for detecting microbial 
ecosystem instability, going beyond traditional metrics like alpha diversity or species abundance. While such classical 
measures provide snapshots of community composition, they often overlook the intricate web of interactions that 
sustain microbial function and resilience. In contrast, entropy captures these interaction patterns, identifying when a 
system has shifted from a highly connected, resilient state to a fragmented, vulnerable one. This makes entropy a 
dynamic marker of ecosystem health and a predictor of susceptibility to future perturbations. 

A central contribution of this study is the identification of hidden keystone taxa through entropy-informed approaches. 
Unlike conventional keystone detection methods that focus on abundance or centrality, entropy highlights taxa whose 
loss disproportionately increases systemic disorder. These organisms may not be the most numerous or centrally 
located in the network, yet they anchor the overall interaction structure and functional versatility of the microbiome. 
Their removal, often triggered by antibiotics, leads to cascading failures that impact both microbial communities and 
host physiology, including metabolic disruption and immune activation. These insights reframe our understanding of 
keystone behavior not as a static attribute of specific species, but as a context-dependent property revealed by entropy 
shifts. 

Importantly, the study establishes the groundwork for precision interventions in microbiome medicine. By monitoring 
entropy levels and tracking entropy-associated taxa, clinicians and researchers can better predict which microbial 
communities are at risk, when interventions are necessary, and what strategies may restore ecological balance. This 
opens avenues for entropy-informed antibiotic stewardship, where patients with vulnerable entropy profiles might 
receive targeted or narrower-spectrum antibiotics, reducing collateral damage. It also supports the rational design of 
next-generation probiotics based on taxa shown to stabilize entropy and promote network reassembly. 

Entropy’s strength lies in its scalability and adaptability across systems. Whether applied to human gut microbiomes, 
skin or oral ecosystems, or environmental habitats like soil and water, the entropy framework generalizes across 
domains. It can integrate easily with sequencing pipelines, be extended to multi-omic layers, and be visualized in real-
time monitoring platforms for personalized diagnostics. Entropy captures both the structure and potential behavior of 
microbial ecosystems, making it a uniquely insightful and robust tool in the microbial systems science toolbox. 

In sum, this work positions entropy not just as a theoretical construct, but as a practical and transformative metric for 
microbiome research and clinical application. By uncovering keystone dynamics, quantifying resilience, and guiding 
therapeutic decisions, entropy enables a deeper understanding of microbial ecosystems and empowers us to better 
protect and engineer them in the face of perturbations.  
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