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Abstract 

The field of civil, environmental, and geomatics engineering (CEGE) is changing as a result of the combination of artificial 
intelligence (AI) and geospatial technologies, or GeoAI. Advanced predictive modeling, spatial automation, and data-
driven infrastructure planning at previously unheard-of scales are made possible by this convergence. However, despite 
these advancements, there are still a number of technical difficulties and unexamined ethical issues with using AI in 
geospatial contexts. In order to assess how GeoAI is operationalized within CEGE and how ethical and technical aspects 
intersect throughout its development lifecycle, this study provides a critical synthesis of 30 peer-reviewed publications 
(2013–2025). From conceptual ambiguity in defining GeoAI to application trends in hydrological modeling, urban 
planning, and environmental surveillance, five main themes emerge: persistent technical limitations like data 
heterogeneity, poor model transferability, and high computational demands; ethical risks like algorithmic bias, 
surveillance-driven privacy erosion, model opacity, and accountability gaps; and the lack of strong governance 
frameworks, especially in underrepresented global regions. The review shows a disjointed body of knowledge where 
engineering optimization and ethical foresight are often separated. In response, this study presents an ethics-by-design-
based research agenda with a focus on sustainability-centered evaluation metrics, contextualized model development, 
and participatory co-design. To incorporate ethical protections into the GeoAI pipeline, a conceptual roadmap is put 
forth. A Critical GeoAI paradigm one that promotes social justice, openness, and ecological responsibility in built 
environment systems in addition to technical sophistication is advocated in the study's conclusion. 

Keywords: GeoAI. Civil and Environmental Engineering; Geomatics; AI Ethics; Spatial Data Governance; Ethics-by-
Design; AI Governance 

1. Introduction

Traditional workflows are being significantly altered by the growing integration of Artificial Intelligence (AI) across 
spatially intensive disciplines, especially in the field of Civil, Environmental, and Geomatics Engineering (CEGE) [1, 2, 
3]. A significant methodological change is taking place in these data-rich domains, which include the planning, design, 
analysis, and management of environmental and infrastructure systems [4]. CEGE, which has historically relied on 
empirical and deterministic models, is increasingly embracing AI-driven methodologies that improve predictive 
capacity [5, 6], optimize intricate systems, and derive useful insights from large, diverse spatial datasets [7, 8, 9]. There 
has never been a more pressing need for CEGE professionals to utilize and critically evaluate AI's potential, from 
intelligent transportation networks and hydrological forecasting to pollution monitoring and land-use classification [10, 
11, 12]. 
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The fundamental function of geomatics engineering, the field that supports the collection, processing, and analysis of 
spatial data, is essential to this change. The spatial scaffolding necessary for CEGE decision-making has long been 
supplied by tools like Geographic Information Systems (GIS), remote sensing technologies (such as satellite and UAV 
imagery), and spatial data infrastructures (SDIs) [13, 14]. These tools are now engines for AI integration, enabling 
dynamic, predictive, and scalable insights, rather than just being repositories of geographic data in the AI era. In order 
to perform tasks like accurate land use and land cover (LULC) classification and sophisticated urban growth simulations 
[15], machine learning models have demonstrated remarkable efficacy in analyzing high-dimensional geospatial data 
[16, 17, 18]. In contrast, GIS offers the analytical framework and spatial logic required to model and visualize these 
results, enabling a sophisticated interpretation of socio-environmental phenomena [18]. However, there are also 
complicated ethical risks associated with this AI-geomatics synergy, such as the possibility of surveillance, spatial 
discrimination, and unanswered issues regarding data ownership and governance [19, 20, 21]. 

It is becoming more and more necessary to examine the technical viability and morality of AI-enabled geospatial tools 
as their use spreads throughout CEGE. Unchecked AI implementation could have unintended consequences because of 
the sectors' direct influence on environmental stewardship, resource distribution, and public safety. Uncertain 
accountability for engineering failures informed by AI outputs [22, 23], opacity in “black-box” models used in structural 
or environmental risk decisions [24], privacy erosion from unconsented satellite and drone surveillance [25, 26], and 
algorithmic bias in zoning and flood-risk assessments [27, 28, 18] are among the risks that have been documented. 
These difficulties are made worse by technical constraints like poor robustness, limited model generalizability, 
fragmented data interoperability, and the high environmental cost of computation [28]. 

Even though normative discussions on AI ethics are gaining traction and research on AI applications in the civil and 
environmental domains is growing, these two threads are still mainly disconnected. Few studies look at the ways that 
important ethical issues like fairness, environmental justice, or procedural accountability interact with GeoAI’s 
technical limitations, such as data sparsity, algorithmic opacity, or spatial autocorrelation. In addition to creating 
governance blind spots, this conceptual and disciplinary fragmentation has hindered the creation of ethical safeguards 
that are context-sensitive and specific to CEGE practice. 

By offering a methodical synthesis of the ethical and technical issues raised by the growing use of AI in geospatial 
applications in the fields of civil, environmental, and geomatics engineering, this review seeks to close that gap. It 
specifically lays out the new terrain of GeoAI applications, classifies the most common technical limitations, and 
examines important moral conundrums throughout the whole AI lifecycle, from data collection and model training to 
deployment and post-deployment monitoring. Additionally, the study critically assesses the limitations and suitability 
of existing AI ethics frameworks in the context of geospatial engineering. In light of this synthesis, it suggests 
professional best practices and concrete research avenues to encourage the adoption of transparent, ethical, and 
context-aware AI in the built and natural environment sectors. 

The focus of the review is on AI applications in core CEGE subdomains that heavily utilize geospatial technologies, such 
as GIS, remote sensing, and SDIs. These consist of land-use optimization, hydrological modeling, structural evaluation, 
environmental hazard forecasting, infrastructure condition monitoring, and sustainable urban planning. Algorithmic 
bias, explainability and transparency (XAI), accountability, spatial surveillance and privacy, and wider socio-ecological 
justice implications are among the ethical aspects examined. At the same time, the impact of technical issues like model 
generalization, computational scalability, resolution mismatches, and data availability on fair and trustworthy AI use in 
CEGE practice is critically evaluated. 

2. Methodology 

The intersection of artificial intelligence (AI), geospatial data applications, and the technical and ethical ramifications of 
such integration within Civil, Environmental, and Geomatics Engineering (CEGE) is critically examined in this review 
using a methodical literature mapping approach. This study's methodological framework is based on well-established 
evidence synthesis protocols, especially those described by [29, 30], which place a strong emphasis on conceptual rigor, 
reproducibility, and methodological transparency. 

2.1. Review Protocol 

This review was designed using a structured five-phase protocol that allowed for thematically grounded insights while 
guaranteeing thorough coverage of the body of existing literature. The scope and main research questions were 
established, pertinent databases were found, a targeted set of search terms was created, studies were screened 
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according to inclusion and exclusion criteria, quality improvement and thematic coding were carried out, and the results 
were synthesized into key analytical categories. 

The central question of this protocol is: How do ethical issues and technical difficulties interact when using AI-driven 
geospatial applications in the fields of geomatics, environmental, and civil engineering? The review’s dual goals are 
reflected in this framing: first, to document and assess AI applications that use geospatial technologies in CEGE; and 
second, to examine the ethical frameworks or lack thereof that support these implementations. 

2.2. Search Strategy 

Four significant academic databases Scopus, Web of Science, IEEE Xplore, and Science Direct known for their thorough 
coverage in computer science, engineering, and spatial science were the focus of a methodical search. Boolean keyword 
combinations were used in the search strategy to capture both ethical and technical aspects. Domain-specific terms like 
“civil engineering,” “environmental engineering,” “geomatics,” “urban planning,” and “infrastructure” intersected with 
core search terms like variations of “GeoAI,” “geospatial artificial intelligence,” “AI in GIS,” and “AI in remote sensing.” 
The ethical dimensions of “bias,” “privacy,” “transparency,” “explainability,” “accountability,” and “ethical challenges” 
further refined these. 

In order to reflect the period of rapid development and diversification in AI applications for geospatial engineering, the 
publication time window was set between 2013 and 2025. To guarantee academic quality and accessibility, only high-
impact conference papers and peer-reviewed journal articles published in English were taken into consideration. 

2.3. Inclusion and Exclusion Criteria 

Studies that (i) used AI methods to solve geospatial issues in CEGE contexts and (ii) specifically addressed at least one 
aspect of the implications for ethics, society, or governance were accepted. Only papers from prestigious conferences 
or peer-reviewed journals were kept. Papers that were not geospatial or engineeringly relevant, that only addressed 
algorithm performance without addressing ethical or societal issues, or that came from grey literature (such as theses, 
blog posts, and non-peer-reviewed sources) were not included. Publications written in languages other than English 
were also not included. The study’s selection criteria are compiled in Table 1. 

Table 1 Inclusion and Exclusion Criteria 

Inclusion Criteria Exclusion Criteria 

Studies applying AI to geospatial problems in 
civil/environmental/geomatics domain 

Articles without clear geospatial or engineering 
relevance 

Articles discussing ethical, governance, or social implications Purely technical studies without ethical framing 

Peer-reviewed journal or top-tier conference publications Grey literature, preprints, theses, blog posts 

Publications between 2013 and 2025 in English Non-English or non-peer-reviewed sources 

2.4. The Selection Process for Studies  

812 articles were found in the first database search. 112 articles were chosen for full-text review after titles and 
abstracts were filtered based on inclusion and exclusion criteria and duplicates were eliminated. A final sample of 30 
studies was chosen for in-depth thematic analysis after a secondary evaluation that focused on methodological 
soundness, ethical relevance, and domain specificity.  The PRISMA (Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses) guidelines were adhered to during the process. The PRISMA flow diagram for the identification, 
screening, and inclusion phases is shown in Figure 1. 
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Figure 1 PRISMA-style flow diagram for study selection 

2.5. Thematic Coding and Data Extraction 

To methodically record important characteristics from every study, a standardized data extraction sheet was created. 
The following variables were extracted: the year of publication, the author, the application domains (e.g., flood 
prediction, infrastructure health, pollution detection, land-use modeling), the geospatial technologies (e.g., GIS, remote 
sensing, UAV imagery), and the AI methodologies (e.g., convolutional neural networks, random forests, support vector 
machines, LSTMs).  

Every paper was assessed based on how well it addressed ethical issues like data colonialism, explainability, model 
opacity, algorithmic bias, privacy violations, and accountability. When governance mechanisms or frameworks were 
suggested, they were also recorded. 

Thematic analysis used a hybrid methodology that combined qualitative pattern recognition in NVivo with manual 
coding in Excel. Five thematic clusters emerged as a result of this iterative process, and these clusters organize the core 
synthesis that is shown in the following section:  

• GeoAI’s conceptual and definitional bounds  
• AI's application domains in CEGE  
• Challenges with technical design and implementation  
• Institutional, governance, and regulatory gaps  
• Ethical issues throughout the AI lifecycle  

These themes offer a critical lens through which the developing field of AI-integrated geospatial systems in CEGE can 
be examined, exposing both areas of technological and ethical vulnerability as well as innovative potential. 

3. Results and Literature Synthesis 

The technical accomplishments, methodological flaws, and ethical conflicts that define current work on AI-driven 
geospatial applications in civil, environmental, and geomatics engineering (CEGE) are outlined by five interlocking 
themes that emerged from a careful reading of the thirty articles that were kept for analysis. The sequence progresses 
from fundamental definitional questions to applied domains, followed by cross-cutting technical and ethical challenges, 
and ultimately ends with structural governance gaps. Each theme is summarized below. 
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3.1. Definitions and Conceptual Limitations of GeoAI  

Even though the term “GeoAI” is now commonly used, its definition is still open-ended. The majority of authors define 
it as the combination of data-driven algorithms derived from machine learning, deep learning, or knowledge graph 
reasoning with geospatial technologies, including remote sensing, Geographic Information Systems (GIS), and spatial 
data infrastructures (SDIs) [31, 32]. However, a number of studies note that the term fluctuates between subfield, 
methodological toolkit, and even paradigm shift [33, 32], creating uncertainty in the design and assessment of research.  
Notably, geomatics engineering, which has its roots in surveying, geoinformation science, and spatial measurement, is 
becoming more and more integrated with geoAI as a field that advances algorithmic spatial analytics and as a source of 
fundamental geospatial data. 

There are two recurring technical blind spots. First, a lot of GeoAI pipelines inflate accuracy estimates by downplaying 
spatial autocorrelation, which goes against the independence assumptions of classical machine learning. Second, there 
is still a significant label scarcity problem in remote sensing applications, which frequently lead to inadequate 
supervision that increases uncertainty. The epistemological conflict that arises when deterministic physical 
phenomena, like structural loads or hydrological flows, are mapped onto probabilistic models is rarely discussed in 
literature. To put it briefly, there is currently no rigorous, domain-specific ontology of GeoAI, which makes 
methodological comparability and ethical decision-making difficult. 

3.2. AI Application Domains in CEGE  

Table 2 summarizes the corpus’s five main application areas. Over 80% of the reviewed studies are related to flood 
forecasting, urban growth modeling, pollution surveillance, structural health assessment, and infrastructure 
optimization. The methodological landscape is dominated by random forests, convolutional neural networks, and long 
short-term memory architectures, which are often combined with multi-sensor imagery, digital elevation models, or 
BIM integrated sensor feeds.  

Table 2 AI techniques, representative application domains, and recurrent ethical concerns 

Application domain Predominant AI 
methods 

Core geospatial inputs Salient ethical risk 

Flood prediction / 
hydrology 

RF, LSTM, SVM RS imagery, DEMs, hydrological 
GIS layers 

False-positive alarms; 
liability 

Urban growth & 
planning 

CNN, decision-tree 
ensembles 

Multi-temporal RS, 
crowdsourced VGI 

Zoning bias, gentrification 

Pollution & hazard 
monitoring 

Deep CNN, k-NN Hyperspectral RS, in-situ sensors Surveillance, data fairness 

Structural health 
monitoring 

Sensor-fusion ML BIM + IoT, GIS layers Model opacity, safety 
verification 

Infrastructure 
optimisation 

GA, RL hybrids UAV photogrammetry, SDIs Energy cost, 
explainability 

While performance metrics are routinely reported, fewer than one-third of the studies interrogate distributive impacts, 
stakeholder participation or long-term governance revealing a persistent technocentric bias. 

3.3. Technical Challenges in Model Design and Implementation  

Four bottlenecks recur across domains. Data heterogeneity disparities in spatial resolution, spectral range and temporal 
cadence complicates data fusion and undermines replicability [34]. Interoperability remains weak: proprietary model 
pipelines often cannot be ported across software ecosystems, fragmenting cumulative progress. Generalization is 
another fault line: models tuned to data rich metropolitan regions of the Global North deteriorate sharply when applied 
to informal or data scarce settings [35]. Finally, the computational footprint of large convolutional networks, 
particularly in very high-resolution imagery, raises both economic and environmental concerns [36]. Each technical 
limitation has an ethical shadow whether exclusions of low resource regions, opacity for cross platform auditing, or 
carbon costs borne by communities that derive minimal benefit. 
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3.4. Ethical Issues Throughout the AI Lifecycle  

Ethics is often not a design driver, but rather emerges only after model validation. There are five main risk categories 
(Table 3). Unfair mapping of disasters and distorted land use classifications are examples of algorithmic bias [37, 38]. 
Unauthorized high frequency satellite and drone surveillance compromises privacy [39]. Professional accountability in 
infrastructure decisions is hampered by opacity, or the lack of strong XAI tools [40]. When engineering decisions are 
informed by AI outputs but there is no obvious chain of responsibility for the failures that result, responsibility gaps 
arise [41]. Last but not least, data colonialism emerges when actors in the Global North gain the most from training 
datasets taken from the Global South [42]. A governance gap is confirmed by the low number of papers that use formal 
frameworks like IEEE EAD or EU Trustworthy AI. Figure 2 shows the Lifecycle of Ethical Risks in GeoAI for CEGE. 

Table 3 Dominant ethical concerns and illustrative manifestations 

Ethical concern Typical manifestation in CEGE Illustrative reference 

Algorithmic bias Unequal flood-risk zoning [37, 38] 

Privacy loss Unregulated aerial monitoring [39] 

Model opacity Uninterpretable structural-risk scores [40] 

Accountability gaps Ambiguous liability for AI errors [41] 

Data colonialism External exploitation of local imagery [42] 

 

Figure 2 Lifecycle of Ethical Risks in GeoAI for CEGE. 

This conceptual diagram shows how various ethical issues, like algorithmic bias, privacy loss, and accountability gaps, 
correspond to different phases of AI development and application. As AI becomes more integrated into civil and 
environmental engineering workflows, it emphasizes how crucial it is to address ethical vulnerabilities early in the 
lifecycle rather than after the fact. 

3.5. Governance Shortfalls and Prospects  

Three deficiencies at the system level become apparent. First, there is a governance blind spot: there is no single 
oversight framework for GeoAI in engineering professional associations, especially in fields like geomatics where the 
ethics of geospatial data are still not well-established. Second, only three papers in the corpus reported community 
feedback loops or stakeholder co-creation, indicating the rarity of participatory design. Third, evidence is skewed by 
geographic asymmetry: over 80% of studies come from the US, Europe, or China, under examining contexts in the Global 
South. Table 4 provides a summary of the thematic findings.  

Governance tools that emphasize indigenous and local knowledge systems, incorporate participatory co-design into 
GeoAI projects, and require geographically contextual benchmarking prior to deployment will be necessary to address 
these deficiencies. 
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Table 4 Summary of thematic findings 

Theme Analytical focus Principal gap or risk 

1 Conceptual foundations Definition of GeoAI Ontological ambiguity 

2 CEGE applications Domain coverage Technocentric bias; limited equity analysis 

3 Technical challenges Data, interoperability, energy Weak generalisation & sustainability 

4 Ethical challenges Bias, privacy, opacity, liability Minimal integration of formal frameworks 

5 Governance & equity Oversight, participation, geography Poor Global South representation 

When taken as a whole, these themes demonstrate that although GeoAI is technically superior, its governance and 
ethical framework is not up to par. This discrepancy serves as the impetus for the ethics by design roadmap and 
discussion that follow. 

4. Discussion 

4.1. Understanding the Intersections: The Dual Potential and Danger of GeoAI  

The data gathered for this review demonstrates GeoAI’s conflicted status in modern civil, environmental, and geomatics 
engineering (CEGE). On the one hand, the combination of geospatial analytics and artificial intelligence techniques 
allows for previously unheard-of improvements in environmental stewardship, infrastructure responsiveness, and 
predictive accuracy. These days, engineers can simulate structural vulnerability under compound climate stressors, 
trace pollution dynamics through real-time sensor networks, and model flood risk with sub-hour temporal granularity 
all of which collectively reshape the analytical toolkit of the built environment professions. 

However, vulnerabilities that are still poorly understood cast a shadow over these technological advancements. 
Algorithmic bias, spatial injustice, widespread surveillance, and systemic opacity are ethical issues that are usually 
addressed after model deployment, if at all, according to the literature. Because design and ethics are no longer linked, 
there is an ethics lag in which standards, safeguards, and interpretive frameworks are constantly surpassed by 
technological innovation. Therefore, high-stakes applications like pollution monitoring, zoning automation, and disaster 
early warning are still vulnerable to unsafe or unfair outcomes, especially in areas with weak institutions or limited 
data. Epistemic justice, participatory governance, and local agency are further marginalized by a persistent 
technocentric orientation; the majority of empirical demonstrations come from the Global North, where computational 
infrastructure and data abundance offer advantages that are rarely found in the Global South. GeoAI thus risks 
reinforcing existing asymmetries in infrastructure investment, risk exposure, and policy responsiveness. 

4.2. A Prospective Research Agenda for Ethical GeoAI  

A research agenda that combines technical advancement with ethical reflection is necessary to reposition GeoAI as a 
tool for innovation and equity. Model architectures need to be trained and validated in a variety of geographical, cultural, 
and sociopolitical contexts. Instead of defaulting to sensor-rich metropolitan areas, data pipelines should prioritize the 
realities of informal settlements and urban–rural discontinuities. Fairness-aware sampling, interpretable machine 
learning diagnostics, and scenario-based impact simulations during data curation and model calibration must all be 
incorporated into ethical auditing, which should become standard practice throughout the AI lifecycle. These 
requirements suggest a cultural shift toward preventive ethics as standard engineering practice, in addition to technical 
changes. 

The institutionalization of inclusive and participatory design is equally important. Even though vulnerable populations 
are disproportionately impacted by the socio-technical systems being modeled such as flood exposure, air quality 
gradients, and transportation accessibility community engagement is still uncommon in contemporary GeoAI 
workflows. In order to change impacted communities from passive data subjects into active epistemic partners, 
participatory mapping, co-design workshops, and easily accessible visualization dashboards are crucial. Lastly, it is 
necessary to make clear the environmental cost of computation, which is frequently invisible. There are significant 
energy overheads associated with large-scale model training on very high-resolution imagery, which are rarely 
documented in the literature. Transparent carbon accounting, edge-based inference, and energy-efficient architectures 
should be the main focus of future research. 
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4.3. CEGE’s Ethics-by-Design Roadmap for GeoAI  

An Ethics by Design roadmap is shown in Figure 3, which links specific governance checkpoints to each stage of the AI 
pipeline, including data collection, model development, validation, and deployment. These checkpoints are translated 
into suggested practices in Table 5, which covers everything from socio-spatial error analysis and public redress 
mechanisms to participatory VGI collection and stratified sampling. Along with accuracy, scalability, and cost 
effectiveness, the roadmap treats normative alignment as a constitutive design criterion, emphasizing preventive rather 
than reactive ethics. 

 

Figure 3 Ethics-by-Design Roadmap for GeoAI in CEGE 

 

Table 5 Mapping Ethical Principles to AI Lifecycle Stages in CEGE 

AI Lifecycle 
Stage 

Ethical Checkpoint Recommended Practices 

Data Acquisition Informed consent, spatial 
representativeness 

Participatory VGI collection, drone regulations, 
stratified data sampling 

Model 
Development 

Bias detection, contextual relevance, 
explainability 

Interpretable ML, spatial fairness testing, culturally 
appropriate feature engineering 

Validation Simulated impact audits, accountability 
metrics 

Socio-spatial error analysis, stakeholder trialing, 
differential performance checks 

Deployment Governance infrastructure, public 
redress mechanisms 

Open dashboards, audit logs, community monitoring 
feedback systems 

Embedding such safeguards during design, rather than retrofitting them post-deployment, provides a pragmatic 
pathway toward socially and environmentally responsible GeoAI. 

4.4. Moving Toward an Important GeoAI Framework  

The review's thematic patterns highlight the need for a Critical GeoAI paradigm that prioritizes reflexivity, equity, and 
plural knowledge systems over instrumental optimization. The critical approach asks what infrastructure conditions 
are necessary for AI to function justly, rather than what AI can do for infrastructure. Deep interdisciplinary cooperation 
between geomaticians, computer scientists, ethicists, civil and environmental engineers, and urban scholars is 
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necessary to realize this paradigm. Equally important is institutional reform: funding organizations should support 
governance frameworks that elevate indigenous epistemologies and Global South leadership; professional standards 
should be updated to include algorithmic accountability; and engineering curricula must incorporate ethical literacy. 

In the absence of such changes, GeoAI might, in the name of technological neutrality, reproduce and even exacerbate 
already-existing spatial injustices. On the other hand, a critically minded, ethically conscious GeoAI has the potential to 
support environmental and infrastructure systems that are not only more intelligent but also observably more 
equitable, transparent, and sustainable. CEGE's future legitimacy and societal relevance are at stake. 

5. Conclusion  

The field of civil, environmental, and geomatics engineering (CEGE) is changing as a result of the convergence of artificial 
intelligence (AI) and geospatial technologies, or GeoAI as it is commonly known. AI-driven geospatial tools have greatly 
increased the analytical and operational capacity of infrastructure systems, from flood forecasting and structural 
diagnostics to environmental surveillance and predictive urban planning. However, this review shows that these 
developments are taking place in the midst of unresolved technical vulnerabilities, ethical blind spots, and insufficient 
governance. The unrestrained growth of GeoAI could jeopardize the very social and environmental goals it claims to 
support in the absence of critical examination and interdisciplinary reform. 

The robustness, scalability, and equity of GeoAI deployments are still threatened by ongoing technical issues. Data 
heterogeneity, including differences in sensors, formats, spatial resolutions, and temporal cadences, makes integration 
more difficult and jeopardizes the generalizability of models in a variety of geographical contexts. When used in areas 
with informality, disjointed infrastructure, or few records conditions common in much of the Global South models 
trained in high-density, data-rich environments usually fall short. Platform-level incompatibilities and proprietary 
standards that limit interoperability and impede cumulative innovation exacerbate these disparities. The 
environmental cost of AI computation, especially when deep learning models are trained on high-resolution remote 
sensing data, raises additional concerns because it introduces carbon-intensive workflows that are not sufficiently 
acknowledged in discussions of "smart" or "green" infrastructure. 

The moral ramifications are just as urgent. Socio-spatial disparities can be replicated or exacerbated by algorithmic bias 
in spatial models used for zoning, risk mapping, or land-use classification. Pervasive, frequently unregulated aerial and 
satellite surveillance carried out without consent frameworks or redress mechanisms gives rise to privacy violations. 
Numerous AI models operate as opaque black boxes, making them difficult to understand and hiding the lines of 
accountability in the event of a failure. Remarkably, not many systems incorporate morality into the design process. 
Rarely does the community participate, particularly in marginalized or vulnerable areas where lived experiences, 
cultural contexts, and local knowledge are not included in model validation and training. These omissions raise serious 
concerns about data colonialism and epistemic injustice in addition to decreasing the accuracy and fairness of AI 
systems. 

The results of this review show that a fundamental change in perspective is required, one that acknowledges GeoAI as 
a socio-technical system with material, political, and ethical implications rather than as a neutral tool of optimization. 
The entire AI pipeline needs to be imbued with ethical foresight in order to promote a more responsible paradigm. 
Context-sensitive model development should take sociospatial complexity and geographically varied data into account. 
Fairness, explainability, and community impact must be included in evaluation metrics in addition to predictive 
accuracy. Participatory design needs to become a fundamental practice; it cannot stay on the periphery. GeoAI systems 
should be actively co-produced and examined by engineers, planners, and impacted communities. 

At the same time, computational issues related to AI sustainability need to be addressed. Aligning GeoAI with 
environmental responsibility requires the use of transparent carbon accounting, edge computing for field deployment, 
and energy-efficient architectures. There is also a severe lack of governance frameworks tailored to the physical and 
infrastructure realities of CEGE. Funding agencies, academic publishers, and professional associations must set up 
auditing procedures, ethical standards, and oversight systems that take into account local sensitivities as well as 
international standards. Equitable collaborations that prioritize Global South leadership and context-specific risk and 
resilience strategies are necessary to offset the dominance of Global North institutions in influencing the development 
of GeoAI. 

The future of GeoAI in CEGE ultimately rests on how it is governed, whose knowledge it privileges, and what kinds of 
ecological and infrastructure futures it makes possible, in addition to what AI allows us to model, predict, or automate. 
GeoAI has the potential to worsen environmental damage, infrastructure damage, and spatial injustice if it is not 
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controlled. However, GeoAI has the potential to support more robust, transparent, and just systems if it is guided by the 
principles of reflexivity, inclusivity, and ethics-by-design. This review urges the geospatial and engineering communities 
to take an interdisciplinary, critical approach that views AI as a potent force for social and environmental change rather 
than as an end in and of itself. 

Limitations 

In order to contextualize its findings and guide future research directions, it is important to acknowledge the limitations 
of this review, even though it offers an organized and multidisciplinary synthesis of the ethical and technical aspects of 
AI-driven geospatial applications in civil, environmental, and geomatics engineering (CEGE).  

First, the review’s scope was limited by the publication type and language. The study misses out on a potentially useful 
body of knowledge found in grey literature, technical reports, local policy documents, and non-English academic sources 
because it only looks at peer-reviewed English-language literature published between 2013 and 2025. The adoption of 
AI in geospatial systems frequently develops under unique infrastructure, cultural, and regulatory circumstances that 
are not sufficiently represented in mainstream academic publishing, making this exclusion particularly significant for 
contexts in the Global South. In the GeoAI discourse, the lack of locally based innovations and indigenous knowledge 
systems runs the risk of reiterating epistemic hierarchies.  

Second, it is difficult to fully capture the range of new approaches due to the quick speed of technological advancement. 
The review covers sophisticated techniques like deep learning and hybrid models, but it might not adequately represent 
the latest developments, such as foundation models, multimodal GeoAI architectures, federated learning, or the 
increasing integration of satellite data with large language models (sat-LLMs). The new ethical and technical issues 
raised by these frontier techniques from increased surveillance capabilities and interpretability gaps to data 
sovereignty issues remain understudied in the literature today and are therefore underrepresented in this review. 

Third, publication bias has an impact on the review. Research that shows ethically positive stories or successful AI 
implementations is more likely to be published than studies that show contested deployments, failures, or contentious 
results. Because of this dynamic, there is a chance that the impact of GeoAI in CEGE will be overestimated, hiding 
important cases that could shed light on governance issues and ethical weaknesses. Furthermore, knowledge 
integration is still hampered by the disciplinary silos that exist between engineering, computer science, geography, and 
applied ethics. This leads to fragmented perspectives and unaddressed blind spots. 

The interpretive character of the thematic coding procedure is another drawback. Although methodical procedures 
were adhered to, the categorization of themes entails subjective assessment, especially in a quickly developing, 
multidisciplinary field such as GeoAI ethics. Using the same dataset, different reviewers may highlight different thematic 
categories or theoretical frameworks. This indicates the need for methodological transparency and pluralism in future 
synthesis efforts, but it does not negate the insights offered. 

Finally, empirical validation through stakeholder engagement, field-based experimentation, or original data collection 
is not included in this review. Because of this, although theoretical links between ethical issues and technical constraints 
are made, they have not been put to the test in practical situations. The findings' generalizability and practical 
applicability are limited by their lack of empirical support, particularly for practitioners looking for practical advice. 

These restrictions are not insignificant. However, they also highlight important directions for future study, such as 
incorporating grey and multilingual literature; assessing ethical frameworks in working GeoAI systems empirically; and 
implementing intersectional, participatory, and internationally inclusive research designs. Achieving more responsible, 
equitable, and context-sensitive GeoAI development will require tackling these constraints as AI becomes more 
integrated into the built environment's spatial governance and infrastructure systems. 
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